レーザの多重反射と蒸発を考慮した
レーザ穴あけ加工の熱流体解析

野口 昌* 大村 悦二* 平田 好則**

Thermohydrodynamics Analysis of Laser Drilling Considering Multiple Reflection of Laser and Evaporation

Noguchi Satoru, Ohmura Etsuji and Hirata Yoshinori

*大阪大学大学院（〒565-0871 吹田市山田丘 2-1）
noguchi@mapse.eng.osaka-u.ac.jp

In this paper, laser drilling was analyzed by considering multiple reflections and evaporation of material. In the keyhole formation process, the variation of the hole shape and the variation of the absorption of the laser power distribution in the wall were examined. The flow velocity distribution of molten metal was also examined. Moreover, the effect of material on the hole shape was examined. The main results obtained are as follows: (1) At the stage where the depth of the hole is comparatively shallow, the power at the bottom of hole increases by the effect of multiple reflection. (2) When the hole becomes deep, the effect of multiple reflections becomes remarkable and the absorption factor increases. The absorbance increases due to multiple reflections to a value of about 0.75. (3) When the hole becomes deep, the flow field shows circulation of molten metal that rises near the walls of the keyhole and by surface tension, moves away from the keyhole at the surface, forming an eddy. (4) Because the thermal diffusivity of aluminum is larger than iron, the energy lost by thermal diffusivity increases, and the energy used to evaporate decreases. Moreover, the melting point of aluminum is lower than that of iron. Therefore, in case of aluminum, the molten pool broadens and the hole becomes narrow.

Key words: laser drilling, free surface, multiple reflection, evaporation, absorbance

1. 緒言

高エネルギー密度でレーザ穴あけを行うと、母材溶融部にはキーホールが形成される。キーホールが形成されることがアスペクト比の大きな穴あけができる一方、ポリッシュティングなどの欠陥の原因ともなる。そこで、レーザ穴あけ時、深さのキーホール拡散を知ることが重要となる。実験的には、キーホール拡散および溶融金属の流れを、X 線を用いて観察する研究が見られる。キーホールは材料内部で生じるため、キーホール観察は一般に難しく、そのため、キーホール拡散を理解し、加工穴形状を予測する有効な手段としてコンピュータシミュレーションがある。

これまでのレーザ溶接シミュレーションでは、キーホール壁面を固定した熱伝導計算や、円柱のキーホールを仮定した熱流体計算などが行われている。しかし、キーホール形成時には、レーザの多重反射、蒸発、蒸発吸収による液面形状の変化、溶融金属の流れなどが生じる。自由表面でのレーザの多重反射を考慮したシミュレーションは最近あるが、多重反射の計算手法についてはまったく示されていない。そこで本研究では、レーザの多重反射、材料の蒸発、蒸気吸収を考慮して、レーザ穴あけにおける金属の溶融・蒸発現象を仮定内で熱流体解析することを目的とした。

前報では、レーザ穴あけシミュレーションで不可欠であるレーザの多重反射について、VOF 法で表現された穴形状に対してレーザの多重反射を光学追跡し、壁面のパワー分布を求める計算方法を述べた。

本報では、まず、材料のレーザ穴あけについて、レーザの多重反射、蒸発吸収、蒸発による質量の損失、自由表面の変化を考慮した解析モデルを構築し、支配方程式について述べる。構築したモデルに基づいた熱流体解析を行い、キーホール形成過程における穴壁面の吸収レーザパワー分布の変化、溶融金属の流速分布の変化、材料の変化による加工穴形状の違いなどを検討する。

2. 解析方法

2.1 熱流体の支配方程式

溶融金属は非圧縮性のニュートン流体と仮定する。支配方程式は、連続の式

\[\nabla \cdot \mathbf{v} = 0, \tag{1} \]

ナビエ＝ストークス方程式

\[\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\nabla p + \mu \nabla^2 \mathbf{v} + \mathbf{F}, \tag{2} \]

エネルギー方程式

\[\rho c \frac{\partial T}{\partial t} = \nabla \cdot (\kappa \nabla T) + Q, \tag{3} \]

ここで、\(\rho \) は密度、\(c \) は比熱、\(\kappa \) は熱伝導率、\(T \) は温度、\(Q \) は定常熱源を表す。
\(\rho \left(\frac{\partial H}{\partial t} + (\mathbf{v} \cdot \nabla) H \right) = \nabla \cdot \left(\frac{K}{C_p} \nabla H \right) + w \)

(3)

の三式である。ここで、\(\mathbf{v} \) は流体ベクトル、\(p \) は圧力、\(F \) は体積力ベクトル、\(\mu \) は粘性、\(\kappa \) は熱伝導率、\(C_p \) は定圧比熱、\(H \) はエンタルピー、\(w \) は内部発熱である。
内部発熱は前報 \(^7\) で報告した光線遮断を用いたレーザーの多量放射による計算ができる。

2.2 自由表面の計算法

2.2.1 VOF 法と流体変位法

本研究では、表面形状の表現方法として、VOF 法 \(^8\) を採用している。VOF 法は、空間を離散化したときに得られる領域 \(\Gamma \) の流体体積率 \(F \) を用いて自由表面の形状を表現する手法である。定義から \(0 \leq F \leq 1 \) であり、ここでは \(F = 0.5 \) の位置を界面とみなす。

各要素における物性値 \(\phi \) は \(F \) を用いて次式のように表すと仮定する。

\(\phi = \phi_0 (1 - F) \)

(4)

ここで、\(\phi_0 \) は流体の物性値、\(\phi_0 \) は気体の物性値である。本シミュレーションでは、気体を空気とした。

自由表面流れによる流体体積比 \(F \) の移流方程式は、次式で表すことができる。

\(\frac{\partial F}{\partial t} + \mathbf{v} \cdot (F \mathbf{v}) = 0 \)

(5)

移流項の計算に MARS 法 \(^9\) を用いた。

2.2.2 表面張力の取扱い

自由表面を有する流体を取り扱うには、表面張力を考慮する必要がある。表面を境界とする流れの方法では、境界条件の与え方や境界値の計算方法など、取り扱いが複雑になる。数値計算上負担となる。そこで、表面力である表面張力を体積力に換算し、ナビエ＝ストークス方程式に組み込む CSF 法 \(^{10}\) を用いる。界面の法線ベクトル \(n(x) \) と体積力ベクトル \(F_n(x) \) は次式で表される。

\(n(x) = \frac{\nabla n}{|
abla n|} \)

(6)

\(F_n(x) = \alpha(x) n(x) \frac{\rho(x)}{\rho} \)

(7)

ここで、\(\alpha \) は表面張力係数、\(n \) は界面の曲率、\(\rho(n) = \rho_0 + \rho_1 \) である。

2.3 蒸発モデルと蒸発反応力

蒸発開始後、表面領域 \(S \) に多重反射で吸収されたレーザーエネルギーカー、材料内部への熱伝導と蒸発の二通りに使われる。微小時間 \(\Delta t \) 間の材料の蒸発質量 \(m_0 \) は、次式で与えられる。

\[m_0 = Q \Delta t \]

(8)

ここで、\(Q \) は多重反射吸収によって表面領域 \(S \) に与えられた吸収レーザーパワー、\(\Delta t \) は蒸発間隔、\(S \) は発熱点到達した領域の材料内部の境界面である。蒸発によって生じる蒸発反応力 \(p \) は、クネーゼン層端端の気体の流速 \(\mathbf{v} \) と単位時間、単位面積当たりの蒸発質量 \(m_0 \) の積で表せる \(^{11}\)。

\[p_0 = \frac{m_0 \mathbf{v}}{SA} \]

(9)

\[\mathbf{v} = \frac{1}{4} \frac{8kT}{\rho m_0} \]

(10)

ここで、\(k \) はボルツマン定数、\(T \) は材料表面の温度、\(m_0 \) は原子 1 個の質量である。

蒸発反応力も、2.2.2 項で用いた CSF 法によって体積力に変換してナビエ＝ストークス方程式に組み込む。体積力ベクトル \(F_n(x) \) は次式で表される。

\[F_n(x) = \rho n(x) \frac{\rho}{\rho} \]

(11)

2.4 計算アルゴリズム

流速、圧力の計算アルゴリズムには、速度修正法である SMAC 法 \(^{12}\) を用いる。ナビエ＝ストークス方程式(2)において、時間ステップを \(n \)、時間分割幅を \(\Delta t \) とし、

\[\frac{V_n - V_n^{n+1}}{\Delta t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \frac{k}{\rho} \nabla^2 \mathbf{v} + \frac{1}{\rho} F \]

(12)

で離散化する。式(12)の右边には未知数 \(p^{n+1} \) が含まれているので、

\[\bar{\mathbf{v}} = \mathbf{v} - \left(\mathbf{v} \cdot \nabla \right) \mathbf{v} = -\frac{1}{\rho} \nabla p + \frac{k}{\rho} \nabla^2 \mathbf{v} + \frac{1}{\rho} F \]

(13)

により、次の時刻の流速予測値 \(\bar{\mathbf{v}} \) を求めめる。

真の流速 \(\mathbf{v}^{n+1} \) を次式のように、流速の予測値 \(\bar{\mathbf{v}} \) と速度の補正量 \(\Delta \mathbf{v} \) の和として表す。

\[\mathbf{v}^{n+1} = \bar{\mathbf{v}} + \Delta \mathbf{v} \]

一方、式(12)，式(13)から、

\[\Delta \mathbf{v} = \frac{1}{\rho} \nabla p^{n+1} \]

(15)

なる関係式が得られる。式(15)の両辺の全液をとった式と式(1)から、圧力 \(\mathbf{p}^{n+1} \) に関するポアソン方程式

\[\nabla \left(\frac{1}{\rho} \nabla p^{n+1} \right) = \frac{1}{\Delta t} \nabla \mathbf{v} \]

(16)

が得られる。式(16)を解くことで圧力 \(\mathbf{p}^{n+1} \) が求めることができ、式(14)、式(15)から得られる

\[\mathbf{v}^{n+1} = \bar{\mathbf{v}} - \frac{1}{\rho} \nabla p^{n+1} \]

(17)

で流速を補正することができる。

次に、本シミュレーションの計算フローチャートを Fig.1 に示す。まず、表面の法線ベクトルを式(6)から計算する。得られた法線ベクトルを用いて、表面張力や蒸発反応力を換算した体積力 \(F_{SV} \)、\(F_{FV} \) をナビエ＝ストークスの式に代入し、SMAC 法を用いて流速場 \(V \) と圧力場 \(p \) を計算する。得られた流速場を用いて、式(5)の移流方程式によって、各要素の新しい \(F \) 値を計算する。

その後、新しい表面でレーザー光線の多重反射を光線追跡によって計算し、表面における吸収レザープロップ分を計算する。得られたレーザープロップ分を用いて、エネルギー方程式を解き、材料のエンタルピー \(H \) を計算する。時間を超えてゆく要素があれば、式(8)(9)から蒸発による蒸発反応力 \(p \) を計算する。
3. 解析結果

3.1 解析条件

数値計算には、有限要素法を用いた。解析領域は、141 μm × 141 μm × 135 μm で、z = 0 を初期表面として、正側に 30 μm、負側に 105 μm とった。レーザの中心軸は z 軸と一致するようにとった。解析領域は、六面体一要素を用いて 33 × 33 × 40 に分割した。解析領域を要素分割した図を Fig. 2 に示す。負側に配置された材料は純鉄であるとし、その物性値を Table 1 に示す。境界条件は、解析領域の周囲を流量 0 で断熱とした。また、F < 0.5 で、融点より低い箇所の流速を 0 とした。

照射するレーザは、Nd:YAG レーザやファイバーレーザのような波長 1 μm 程度のレーザを想定した。この波長であれば、前報 7) で報告したように、プラズマの影響を無視することができる。レーザ強度はガウシアン分布で平行ビームとし、初期表面に垂直にビームを照射した。1/e 2 半径は 20 μm、レーザパワーは 250 W とした。反射率は、波長 1 μm に対する鉄の反射率である 0.65 を用いた。総レーザパワーの 97%が含まれる半径 26.5 μm の領域を含む 26.5 μm × 26.5 μm の領域のビームを 210 × 210 の光線の束に分割して、それぞれの光線にガウシアン分布の強度を考慮してパワーよを与えた。半径 26.5 μm の外部に位置する光線のパワーよは中央部のパワーよと比較して十分に小さいため 0 とした。照射時間は 25 μs とした。

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting point [K]</td>
<td>1809</td>
</tr>
<tr>
<td>Boiling point [K]</td>
<td>3160</td>
</tr>
<tr>
<td>Density [kg/m³]</td>
<td>7870</td>
</tr>
<tr>
<td>Specific heat [J/kg]</td>
<td>460</td>
</tr>
<tr>
<td>Thermal conductivity [W/m K]</td>
<td>83.5 ~ 4.57 × 10⁻² T (293 ≤ T ≤ 1273), 29.7 (1273 < T)</td>
</tr>
<tr>
<td>Latent heat of melting [J/kg]</td>
<td>2.47×10⁶</td>
</tr>
<tr>
<td>Latent heat of evaporation [J/kg]</td>
<td>6.29×10⁶</td>
</tr>
<tr>
<td>Viscosity [N s/m²]</td>
<td>3.7×10⁻³ exp(4.14×10⁹) / 8.31447³</td>
</tr>
<tr>
<td>Surface tension coefficient [N/m]</td>
<td>1.872 ~ 4.9×10⁻³(T - 1536)</td>
</tr>
</tbody>
</table>
3.2 加工穴の形成過程

レーザ照射中の表面形状の変化をFig. 3に示す。照射開始後約1μsで表面がくぼみ始め、時間5μsではFig. 3(b)に示すように、表面に大きなくぼみが形成される。その後、時間10μs、15μsでは穴深さが増すとともに、くぼみ自体が大きくなるFig. 3(c)、(d)。

時刻20μsでは、くぼみの中央部が下がり始め、キーホールの形状が始まるFig. 3(e)。その後、時刻25μsでは、Fig. 3(f)に示すようなキーホールが成長し、約60μmのキーホールが形成されている。

3.3 壁面の吸収パワー分布の変化

Fig. 4に光線の一部を取り出した図とx軸断面での穴壁面の吸収レーザパワー分布の結果を示す。時刻5μsでは、Fig. 4(b)左図に示すように、穴深さが非常に浅いためレーザの反射回数は一回だけである。そのため、Fig. 4(a)、Fig. 4(b)では吸収レーザパワーの最大値が同じである。

時刻10μsでは、二度の反射が起こっているものの、吸収レーザパワーの最大値は変化していないFig. 4(c)左図)。

穴の深さが浅いため、光線は一回目の反射後、反対側の穴壁面で反射した後、穴外へ出ていくためである。

しかし時刻15μsでは、Fig. 4(d)に示すように、穴底部の吸収レーザパワーの最大値が増加している。穴壁面の勾配が大きくなり、多重反射によって光線が穴底部に向かって進むためである。

時刻20μsでは、多重反射による穴底部のパワーの増加が顕著に見られるFig. 4(e)。時刻25μsでは、Fig. 4(f)に示すように、穴がさらに深くなり、穴底部に到達するまでに反射回数が増加する。そのため、Fig. 4(e)と比較すると吸収レーザパワーの最大値が減少しているものの、Fig. 4(a)と比較すると、約4.4倍になっている。

Fig. 5に、本シミュレーションにおけるレーザ照射時間と穴深さの関係を示す。約15μsまでは穴あけ速度は約1.3μm/sであるが、15μsを超えると約3.8μm/sに加速している。15μsは、前述したように、多重反射によって穴底部の吸収レーザパワーが増加し始めめる時刻である。

以上のことより、穴の深さが比較的浅い段階でも、多重反射の効果によって穴底部のパワーが増加する。このことから、浅い穴をキーホールに成長させる要因であると考えられる。ただし、穴が深くなるにつれて多重反射が顕著になるため、穴底部のレーザパワーが減少し、キーホール成長速度が低下すると予想される。

3.4 穴深さと吸収率の関係

レーザ穴あけにおける穴深さとレーザの吸収率の変化について検討する。ここで、吸収率εは、

\[\varepsilon = \frac{\text{材料に吸収されたレーザパワー}}{\text{入射レーザパワー}} \] (18)

で定義する。穴深さと吸収率εの関係をFig. 6に示す。Fig. 6から穴深さが約10μmを超えると吸収率が増加を始め、その後急激に増加する。穴深さが比較的浅い段階から多重反射の効果があることがわかる。しかし、穴深さが20μm
を超えると吸収率の増加が緩やかになり、レーザの照射が終了する時刻25μsで穴深さが約58μmに達し、吸収率は約0.75まで上昇する。このことは、キーアホールが長くなれば、多重反射が顕著になりレーザパワーの吸収効率が良くなることを示している。

3.5 加工穴の形成過程における流速分布の変化
時刻5, 15, 20, 25μsの点x断面における表面形状と流速ベクトルについて側面約6度から見た図をそれぞれFig.7(a), (b), (c), (d)に示す。
時刻5μsでは、蒸発反応力によって表面が押し下げられて間もないため、穴中央部で表面を押し下げて流れが発生しているものの、流速は約0.04m/sと大きくな(Fig.7(a))。時刻15μsの段階では、Fig.7(b)に示すように、Fig.7(a)と比較して、穴中央部で表面を押し下げて流れ、蒸発反応力によって約0.33m/sに加速されている。
ところが時刻20μsでは、Fig.7(c)に示すように、溶液池上部で表面から内部へ向かう流れが発生している。溶液金属の表面から向かう流れは、表面張力により、溶液池内部へ向かう流れとなり、流れが形成されると考えられる。
時刻25μsでは、流れはさらに顕著になっている(Fig.7(d))。この流れによって溶液池形状がネイルヘッド型になると推定される。

Fig.4 Relationship between hole shape and laser power distribution
3.6 材料による穴形状の違い

材料による穴形状の違いを検討するために、材料をアルミニウムに変えて解析を行った。照射するレーザは、鉄のシミュレーションの場合と同じで、波長1μm程度のレーザを想定した。波長1μmに対するアルミニウムの反射率は約0.93である。

ここでは、材料の物性値の違いによる穴形状の違いに注目するために、アルミニウムの穴あけで用いたレーザパワーは、初期表面にレーザを照射したとき吸収するパワーが鉄の場合と一致するように1.25kWとした。また、照射時間が鉄の場合と同じ25μsとした。

時刻25μsにおける穴断面における表面形状と流速ベクトルについて側面約6度から見た図をFig.8に示す。Fig.7(d)とFig.8を比較すると、アルミニウムの穴形状は鉄と比較して細くなっている。さらに、Fig.7(d)とFig.8の材料内部における流速ベクトルを比較すると、鉄に比べてアルミニウムの方が、幅広く分布していることが分かる。これは、鉄に比べ、アルミニウムの溶融膜が大きいことを示している。アルミニウムは鉄に比べ熱膨張率が良いために、吸収レーザエネルギーが材料内部へ熱伝導し、蒸発に使われるエネルギーが減少する。一方、鉄の融点1809Kに比べて、アルミニウムの融点は933Kと低い。これらのことから、アルミニウムの方が穴は細くなるとともに、溶融池は広くなると考えられる。

4. 結 言

金属のレーザ穴あけについて、レーザの多重反射、材料の蒸発、蒸発反応を考慮した熱流体解析手法を提案した。
Fig. 8 Velocity vectors and hole shape at \(t = 25 \mu s \)
(material: aluminum, laser power 1.25 kW, \(1/e^2 \) radius 20 \(\mu m \), reflectivity 0.93)

布の変化、溶融金属の流速分布の変化、材料の違いによる加工穴形状の違いなどを検討した。得られた結果を以下に示す。

(1) 穴の深さが比較的浅い段階でも、多重反射の効果によって穴底部のパワーが増加する。このことが、浅い穴をキープホールに成長させる要因になる。

(2) 穴が深くなると多重反射によって吸収率は増加するが、多重反射が顕著になることで穴底部のレーザパワーが減少する。本シミュレーションでは、吸収率は0.75程度まで増加した。

(3) レーザ照射により加工穴が深くなると、溶融金属の表面へ向かう流れは、表面張力により溶融池内部へ向かう流れとなり、滴が形成される。

(4) アルミニウムは鉄に比べ熱拡散率が大きいため、吸収レーザエネルギーが材料内部へより多く熱伝導し、蒸発に使われるエネルギーがその分減少する。一方、鉄の融点1809 Kに比べて、アルミニウムの融点は933 Kと低い。これらのことから、アルミニウムの方が穴は細くなるとともに、溶融池は広くなると考えられる。

本論文によって、レーザの多重反射と材料の蒸発を考慮したレーザ穴あけのシミュレーションが可能になった。今後はレーザ穴あけ実験との比較を行って、本シミュレーション手法の有用性を検討していく予定である。

謝辞

本研究は、平成13、14年度および平成16、17、18年度科学研究費補助金の交付を受けていることを付記し、謝意を表す。

参考文献

16) 高藤和志: 分光学的性質を主とした基礎物性図表, (1972), 386.