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This study addresses the challenges associated with scaling ablation rates while minimizing sur-
face roughness for copper. By employing tailored flexible bursts, the temporal spacing and energy of
individual pulses can be precisely manipulated, creating a high-dimensional parameter space for op-
timization. Traditional optimization methods are labor-intensive and time-consuming. Thus, we pro-
pose an automated Bayesian optimization approach that integrates advanced sensors and a micro-
service-based software platform for real-time adjustments. Our results demonstrate a multi-objective
optimization of removal rates and surface quality, achieving efficiencies of up to 0.16 mm*/minW
while reducing surface roughness to as low as 0.33 pm. The findings indicate that effective process
optimization by Bayesian optimization is plausible, with the potential for significant advancements
in laser processing design. This work underscores the importance of combining Bayesian optimization
with expert knowledge to enhance research efficiency and foster further investigations into optimal

laser processing conditions.
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1. Introduction

The upscaling of ultrashort pulse (USP) laser ablation
processes has been a research topic for more than a decade.
Throughout the relevant literature multiple approaches for
upscaling have been presented and investigated in the past
years. Namely there are four main approaches: - scaling by
repetition rate, -scaling via multiple beamlets, -scaling by
optical stamping and the application of pulse bursts. The ap-
plication of pulse bursts demonstrates significant potential
for the efficient scaling of ablation rate across various mate-
rials [1-3]. In addition to the wide variety of materials that
can be processed with ultrashort pulses, a key advantage of
the burst approach is the low barrier to entry due to the uti-
lization of conventional system technologies, such as galva-
nometric scanners. Despite the considerable potential exhib-
ited by burst ablation, the small temporal and spatial dis-
tances between consecutive pulses amplify shielding effects
and heat accumulation, which can lead to detrimental im-
pacts on process quality and efficiency [4]. To control or
even leverage these secondary effects, tailored flexible pulse
bursts can be employed. These flexible bursts enable the spe-
cific manipulation of each pulse within a burst. Conse-
quently, the temporal pulse spacing can be adjusted by com-
pletely suppressing pulses or the individual pulse energy can
be set to a certain level. By utilizing these flexible bursts, a
high-dimensional parameter space becomes available to op-
timize and tailor bursts to adapt to varying process condi-
tions.

Traditional methods for exploring such high-dimen-
sional parameter spaces are labor-intensive and time-
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consuming. In contrast, we propose a fully automated
Bayesian optimization procedure to streamline material
characterization, focusing on maximizing specific removal
rates while minimizing surface roughness. Our experimental
setup integrates advanced sensors and a microservice-based
software platform to facilitate real-time optimization across
multiple dimensions. The optimizations produced through
this setup are presented and discussed in this work.

2. Setup

The setup used for the fully automated process optimi-
zation is shown in Fig. 1. The ultrashort pulse laser beam
source FX400 from EdgeWave GmbH has a central wave-
length of 1030 nm and a pulse duration of 1.5 ps. The laser
beam source allows to vary the amplitude of each pulse
within a burst of up to 16 pulses with a pulse spacing of 20 ns.
For focusing and deflection of the laser beam an excel-
liISCAN14 from SCANLAB GmbH with a 160 mm f-theta
optic from JENOPTIK AG is utilized and yields a focus di-
ameter 2w0 of 33.6 pm. For comparison of the ablation effi-
ciency, cavities with dimensions of 2x2 mm are machined
on the sample surface. The scan strategy is a bidirectional
line scan with burst overlap BO and line overlap LO of ~
75 % and rotated by 90° with each layer for a homogenous
ablation as schematically shown in Fig. 1b). The burst over-
lap is hereby defined as the distance between the first pulse
of two consecutive bursts, the intraburst pulse distance is ne-
glected. The number of scanned layers 7,;,; remains constant
at 60. The pulse repetition rate f, is set to 300 kHz and the
number of pulses per burst PpB to 6. Therefore, the
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remaining parameters for variation are the burst energy. Fur-
thermore, the pulse amplitudes A1 — A6 of the pulses within
a burst will be varied.
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Fig. 1 a) Schematic diagram of the hardware setup used with laser
beam source, scanner and axis system, and sensor technology. b)
Sketch of the implemented scanning strategy and the measured
values for evaluation.

Regarding the analysis capabilities of the system, four
sensors are fully integrated. For the depth measurements,
necessary for the efficiency evaluation, a confocal distance
sensor from KEYENCE AG is used. The surface roughness
Sa is determined based on measurements with a white light
interferometer (WLI) from GBS metrology GmbH. The la-
ser parameters of the pulse amplitude are measured with a
photodiode from Thorlabs GmbH and the average power is
determined with a powermeter from Gentec-EO.

As sample material for the validation of the optimization
process copper (CWO024A) is chosen. Copper ablation with
pulse bursts using ultrashort pulse laser radiation has been a
topic of research for many years now. Therefore, the occur-
ring effects during ablation like the alternating efficiency
with increasing numbers of pluses within a burst [3-5] and,
especially, the efficiency increase for 3 PpB [5,6] is well
known. This process knowledge provides a good basis for a
scientific discussion on the suitability of the process optimi-
zation method presented here.

3. Bayesian Optimization

The experiments were designed to optimize both the ef-
ficiency € and surface roughness Sa of the produced cavity.
A Multi-Objective Bayesian Optimization (MOBO) ap-
proach was utilized to simultaneously optimize these factors.
The underlying surrogate model used Gaussian Processes
(GP) with Matern 5/2 kernel as a covariance function. As an
multi objective acquisition function (responsible for sam-
pling the next parameter set from the surrogate model)
gNEHVI [7] was chosen since we expect the inputs to be
noisy. The Algorithm was implemented using the Ax and the
Botorch Framework [8—11].

Output constraints were set to target efficiencies above
0.02 mm?*minW and surface roughness below 3 um, effec-
tively defining a region of interest to prevent the algorithm
from seeking Pareto-optimal solutions outside this area. The
model used individual pulse amplitudes Al to A6 as input
parameters, scalable between 0 and 1. Additionally, a virtual
laser power per pulse Ppuise, ranging from 0 to 12 W, was
introduced to prevent excessive powers that could damage
the workpiece by melt based ablation or produce X-rays.
Thus, the maximal possible average power within a process
is limited to 6 times 12 W, with A1-A6 set to 1. Before run-
ning the experiment, the sum of amplitudes Al to A6 was
calculated and multiplied by the selected virtual laser power.
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A constraint ensured this sum exceeded 1.0 to protect the la-
ser, as amplitudes below this level would lead to irreparable
damage to the amplifier. An overview of the designed algo-
rithm is shown in Fig. 2.
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Fig. 2 Overview of the multi objective Bayesian optimization pro-
cedure used in this experiment.

A total of 258 trials were conducted, with seven experi-
ments abandoned due to errors in cavity depth measurement.
These errors arose when the cavity depth was so small that
it could not be reliably detected by the edge detection algo-
rithm. The developed algorithm identifies the edges, refer-
ence surface, and bottom surface of the cavity within the
measured surface profile. However, when the material re-
moval depth is within the range of surface roughness. In this
range, edge detection cannot operate with sufficient accu-
racy because fine structures and irregularities on the surface
significantly hinder the recognition of relevant features. As
a result, the actual depth of the ablation cavity cannot be de-
termined. For this reason, these experiments were excluded
from consideration and did not contribute to the optimization
process. However, this exclusion is not relevant for the ap-
plication case since the goal is to determine the highest effi-
ciency of the material removal. Therefore, optimization fo-
cuses on areas where reliable measurements can be obtained
and where significant ablation can be achieved. To prime the
Gaussian process model, 14 initial random trials were per-
formed using a Sobol sequence for generation [12].

The execution of the experiment was implemented as
follows:

e  The underlying Surrogate Model (Sobol or GP)
is analyzed with an acquisition function and a
new parameter set is generated.

e The parameter set is used to calculate the laser
parameters for the experiment

e The parameters are set on the machine and a
cavity is produced

e  The cavity is analyzed via the WLI and the con-
focal sensor. The generated data is afterwards
feed into an analysis algorithm that determines
Sa and the efficiency of the parameter set.

e  The results are fed back into the model and the
process repeats.

Fig. 3 illustrates hypervolume improvements across tri-
als, with most model improvements occurring in the first 100
trials. The hypervolume is the region spanned between the
output constraints for efficiencies and surface roughness and
the pareto optimal trials, representing the range of achieva-
ble trade-offs. It is therefore bound by the most efficient and
least rough solutions within the defined reference space. A
larger hypervolume indicates a better overall performance of
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the trial set, capturing a more diverse and optimal Pareto
front. In Fig. 3, the hypervolume is calculated from experi-
mental data and not the gaussian process model prediction.
For more than 100 trials, the hypervolume showed slight im-
provement, indicating stagnation in the model. Future exper-
iments will explore this further to determine the optimal
number of trials needed for a suitable model.
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Fig. 3 Course of the hypervolume of the GB model over the num-
ber of trials. The apparent saturation of the curve can be seen
from iteration 100 onwards.

4. Results

The efficiency of the parameter sets is plotted versus the
corresponding surface roughness Sa to build the pareto dia-
gram (Fig. 4). All 258 trials - minus the 7 invalid ones - are
shown in Fig. 4. The color coding visualizes the error per-
centage of the WLI measurements which is the percentage
of the missing data points of the gathered 3D point cloud.
The explanation for the missing data points is the low reflec-
tion on very rough surfaces. As a result, the signal is not suf-
ficient at all lateral points to obtain z information using white
light interferometry. Since no error handling was imple-
mented in advance, WLI measurements with a high propor-
tion of missing data points are incorrectly interpreted by the
algorithm as a very smooth surface with a low Sa. Which is
most likely also the explanation for not measuring higher
roughness values than ~2.2 pm. The reason for the missing
data points is the measurement technique of the WLI itself,
since it is optimized and normally used to measure smooth
surfaces with highest precision. However, the optimization
algorithm did reach a saturation regime in the hypervolume
(Fig. 3), indicating that the optimization may have reached a
limit in the output parameters. The incorrectly interpreted
data points do affect the convergence speed of the optimiza-
tion routine since the algorithm tries to find maxima in these
areas. This will be automatically detected and removed in
future experiments.
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Fig. 4 Pareto diagram of all 258 experiments conducted. The
color coding corresponds to the missing data points from the WLI
surface measurement. The Pareto front trend is already visible.

To include only reliable measurements in the evaluation,
the data was filtered after the optimization for an error per-
centage of the WLI measurement below 5 %. Thus, reliable
data is obtained that can then be filtered an additional time
by an algorithm according to the Pareto principle. This re-
sults in a pareto front consisting of 14 unique data sets
shown in Fig. 5 and Table 1. It becomes evident that there is
a limitation of the accessible efficiency of the ablation pro-
cess around 0.16 mm?*/minW. The theoretical background of
this limitation lays within the laser-material-interaction itself.
Due to the chosen constraints the algorithm stays in the ul-
trashort pulsed ablation regime without melt ejection by heat
accumulation. Therefore, the material gets ablated by evap-
oration, sublimation, spallation and phase explosion. This
process can be described by a threshold model [13] where
material is ablated if a fluence above that threshold is applied.
Based on that model an efficiency model with a maximum
€max at €* times of the threshold fluence Fy, can be derived
[14,15]. This maximum depends on material properties and
laser specifications. In this case the 0.16 mm*/minW are in
good agreement with literature values for copper ablation by
ultrashort pulses [2,4,16].

However, the potential is shown to decrease the surface
roughness Sa after machining to 0.44 pm by only losing
0.01 mm?*minW in efficiency. A further decrease of the Sa
value down to 0.33 um can be realized, but the efficiency
drops down to 0.08 mm*/minW in this case. Which corre-
sponds to 50 % of the highest efficiency reached in these tri-
als.
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Fig. 5 Pareto diagram with 14 data sets after filtering for <5%
missing surface data and filtering according to the Pareto princi-
ple. The Pareto front is clearly visible and shows a limitation at
€£=0.16 mm*minW and Sa =0.33 pm.

Table 1 displays the corresponding iteration number, the
single pulse peak fluences of the six burst pulses and the re-
sulting surface roughness Sa and efficiency €. The group of
data sets reaching the limitation of efficiency as marked in
Fig. 5 are also marked green in Table 1. It becomes evident
that for these data sets the single pulse peak fluences for
many pulses lies within the known optimum range for single
pulse copper ablation of around Fiax = 5 J/em? where gmax 1S
reached[2,4,5]. For the less efficient parameter sets on the
Pareto front, all pulses except one show a single pulse peak
fluence that is below the optimal fluence. This is therefore
consistent with the model presented in the literature for the
efficiency of ultra-short pulsed ablation and the experi-
mental data for copper burst processing and therefore sug-
gests that the optimization of the process via MOBO is plau-
sible.

Table 1 The data sets corresponding to the Pareto front showing
the single pulse peak fluences, the efficiency and the surface
roughness. The sets reaching the efficiency limitation are marked

1n green.
MW
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For better comparability of the burst shape, the relative
pulse amplitudes normalized to the highest fluence within a
burst are shown in Fig. 6. For five of the six parameter sets
a variation of a pre-pulse followed by two pulses with
0 J/cm? or close to it and a triple pulse burst can be seen. For
trial number 198, the algorithm only suggests a triple pulse
with 3 pulses, whereby the other pulses are completely sup-
pressed. These, by the Bayesian optimization created con-
stellations for high efficiency are also very plausible
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compared to literature. For triple pulse burst (3 PpB) with
pulse spacings in the regime of 20 ns as used in this experi-
ment, an efficiency increase up to 20 % is reported [5,6]. It
is also reported that the second pulse within a burst is most
likely the cause of redeposition or strong shielding effects
[4,17,18], which hinders the efficient ablation of material.
Thus, the suppression of these pulses by the algorithm cor-
relates with reaching high efficiency and makes the results
plausible.
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Fig. 6 The relative pulse amplitudes of the six parameter sets
reaching the efficiency limitation marked in Fig. 5.
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5. Conclusion

The application of Multi-Objective Bayesian Optimiza-
tion (MOBO) in process development, particularly in the
context of USP laser processing, demonstrates promising
potential for rapid data generation in complex, multidimen-
sional problems. Despite the efficiency of MOBO, special-
ized knowledge remains essential for experiment design.
The planning and execution of experiments must be guided
by experts to effectively identify and control relevant param-
eters. A significant limitation in the application of MOBO is
the restriction on input parameters, such as the 12 W con-
straint in this example. This limitation can hinder optimiza-
tion flexibility and must be carefully considered.

A detailed understanding of the sensors used is necessary
to ensure accurate measurements. In this case, a misinterpre-
tation regarding surface roughness occurred, which needs to
be addressed. MOBO serves as a valuable tool for quickly
identifying promising process windows that warrant further
investigation. This capability can significantly enhance re-
search efficiency. However, it is crucial to emphasize that
MOBO will not replace scientific research. Instead, it acts as
a supportive tool by suggesting interesting process windows
for more detailed investigations. Without specialized pro-
cess knowledge, no relevant process understanding can be
generated.

Furthermore, additional investigations are needed to val-
idate the results obtained through MOBO and to conduct
physical interpretations. These steps are essential to fully
leverage the capabilities of MOBO methods and to translate
the findings into practical applications. Overall, the combi-
nation of MOBO with solid expertise and further research
efforts can propel the development of more efficient pro-
cesses in the USP laser material processing domain.
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