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Understanding how laser process parameters influence surface topography is crucial for precise 
laser surface texturing. While the complex relationship between laser process and topographical pa-
rameters is difficult to model analytically, it lends itself well to machine learning. The requirement 
for large datasets of topographic parameters has generated a need for software solutions based in 
Python and equipped with batch functionality. In this work, we demonstrate the application of the 
self-developed Python library Surfalize to analyze a large dataset of direct laser interference pattern-
ing textured surfaces in terms of roughness parameters and train different machine learning models 
to predict topographical features from process parameters. The results show that both the random 
forest regressors and gradient boost machines exhibit the best predictive accuracy across a wide range 
of parameters, reaching R² values above 0.9 for amplitude related features such as the structure depth 
and arithmetic mean height. On the other hand, k-nearest neighbors and support vector machines per-
form significantly worse. Moreover, parameters from the functional family are predicted with less 
accuracy than amplitude or hybrid parameters. 
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1. Introduction 
Laser surface texturing, particularly using the direct laser 

interference patterning (DLIP) technique, has garnered sig-
nificant attention in recent years due to its manifold applica-
tions in areas such as controlling wetting [1,2], biocompati-
bility and cell behavior [3,4], optical [5,6] and tribological 
[7,8] properties. Many of these applications often require 
specific surface geometries, often defined by the spatial pe-
riod, peak-to-valley and surface roughness of the pattern to 
achieve an optimal effect. However, the surface topogra-
phies of structures that are obtained by laser processing is 
highly dependent on a large number of parameters, encom-
passing both the process parameters such as the utilized 
pulse energy, repetition rate, scan speed and hatch distance, 
as well as the machine-specific settings. The machine spe-
cific settings encompass factors such as the laser source’s 
pulse duration and wavelength, the exact beam profile, the 
employed focal length, the precision and vibrations in the 
positioning system. On the other hand, the resulting topog-
raphy can be quantified with a wide range of metrics, such 
as the roughness values defined in ISO 25178 [9], which 
play a key role to determine the surface functionality.  

The function linking the process to the topography pa-
rameters presents a high-dimensional and complex relation-
ship, which is difficult to model analytically, even though 
some attempts have been made using semi-empirical models 
[10] as well as design of experiments approaches [11]. In 
order to accurately predict the surface topography from the 
process parameters, this function has to be known. However, 

with the widespread rise of machine learning and increase of 
computing power, these relationships can now be modeled 
without understanding its complex nature.  

For direct laser writing (DLW) techniques, some re-
search works have already applied machine learning to pre-
dict surface topography from process parameters. For in-
stance, Steege et al. [12] used random forest regressors 
(RFR) and artificial neural networks to predict surface 
roughness of DLW produced surface textures. Moles et al. 
[13] compared six different machine learning models for the 
prediction of femtosecond laser grooves and could also ap-
ply an inverse approach to obtain prediction of laser param-
eters for a given input geometry. Moreover, in laser powder 
bed fusion, machine learning is already extensively applied 
to predict and optimize process parameters and material 
properties [14–16]. However, to the best of the authors’ 
knowledge, it has not yet been applied to DLIP.  

A common problem in machine learning is the acquisi-
tion of a large enough dataset. For surface topography eval-
uation, the bottleneck is often the measurement, topographic 
post-processing and evaluation of the laser textures by pro-
prietary software packages, while the machine learning pipe-
line itself is typically realized in Python. We tackle this prob-
lem by using applying the self-developed Python library 
Surfalize to post-process and evaluate the topographical data. 
The library is open-source, offers common roughness pa-
rameters from ISO 25178 [9] as well as batch functionality 
for rapid evaluation of large datasets and is described in de-
tail in [17].  
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In this work, we demonstrate an application of Surfalize 
for use in machine learning to predict surface roughness in 
DLIP processing. A large dataset of DLIP textures is ana-
lyzed, and various machine learning models are trained to 
predict topography based on process parameters. Their per-
formance is compared in respect to each other and across 
different families of topographical parameters. 

 
2. Materials and Methods 
2.1 Materials 

The DLIP textures were fabricated on samples made 
from tool steel 1.4301. The untextured surface exhibited rel-
atively high arithmetic mean height (Sa) values of 0.6 µm 
and had an anisotropic roughness profile as a result of the 
machining finish. 

2.2 Laser texturing 
The textures were fabricated using a DLIP optical con-

figuration with a diffractive optical element (DOE) that 
splits the beam into two sub-beams corresponding to the first 
diffraction orders and a biprism that parallelizes them at an 
adjustable distance from the DOE. The parallel beams are 
overlapped on the substrate surface by an aspheric converg-
ing lens with a focal length of 100 mm, resulting in an inter-
ference angle that depends solely on the distance of the par-
allel beams, which in turn is controlled by changing the dis-
tance of the biprism from the DOE. The resulting spatial pe-
riod (Λ) of the line-like interference pattern depends on the 
laser wavelength and the angle (θ) between the beams as fol-
lows:  

𝛬𝛬 = 𝜆𝜆

2 𝑠𝑠𝑠𝑠𝑠𝑠�𝜃𝜃2�
. (1) 

 
The DLIP optical setup was combined with both a nano-

second and picosecond pulsed laser sources. The nanosec-
ond laser (Laser Export, TECH-1053) exhibited a pulse du-
ration of 15 ns and a wavelength of 1053 nm, a maximum 
repetition rate of 4 kHz and a maximum pulse energy of 
500 µJ. The picosecond laser (Edgewave, PX-200) had a 
pulse duration of 12 ps, a wavelength of 1064 nm and a max-
imum pulse energy of 600 µJ with a maximum repetition 
rate of 1 MHz. The interference diameter (di) in the ideal 
working position was estimated to be ~120 µm for the ns-
setup and to ~250 µm for the ps-configuration in the short 
axis (parallel to the interference fringes) using a beam cam-
era system. 

The texturing strategy followed a pulse-overlapping con-
cept, where lines of pulses were fabricated by translating the 
sample parallel to the interference lines by high-precision 
motorized linear stages. The number of pulses (N) per spot 
was calculated from the pulse distance (p) and interference 
diameter as follows: 

𝑁𝑁 = 𝑝𝑝/𝑑𝑑i. (2) 
 
In order to obtain long-range homogeneous structures, 

adjacent lines of pulses containing the interference pattern 
were fabricated by translating the samples perpendicular to 

the orientation of the interference fringes by the hatch dis-
tance (hd). The hatch distance was always set to an integer 
multiple (hatch factor, hf) of the spatial period Λ so as to cor-
rectly overlap the interference maxima and minima of sub-
sequent lines of pulses. The laser power was varied to obtain 
different fluence (Φ) values, which were calculated as the 
average fluence over the Gaussian beam profile. A sche-
matic of the employed optical setup can be found in [18].  

 
2.3 Surface topography characterization 

The surface topographies were measured using a confo-
cal laser-scanning microscope (CLSM, Keyence, VK-
X3000) with a 50x and 150x magnification objectives. The 
surface roughness parameters were calculated using the self-
developed Python library Surfalize [17] according to the ISO 
25178 standard [9]. Moreover, periodic surface parameters 
such as the average peak-to-valley structure depth and aspect 
ratio were calculated according to the method proposed in 
[17] and implemented in Surfalize. The texture homogeneity 
was estimated using the Gini coefficient approach proposed 
by Lechthaler et al. [19]. High-resolution imaging of the sur-
face textures was conducted using a scanning electron mi-
croscope (SEM) at 15 kV operating voltage (Jeol, JSM 
6610LV). 

2.4 Machine learning 
In order to predict surface roughness and functionality, 

different machine learning models were applied on a dataset 
of textured surfaces. Before model training, the dataset un-
derwent preprocessing to prepare it for regression analysis. 
Categorical variables, such as the pulse duration regime 
(nano- or picosecond), were encoded using one-hot encod-
ing to represent them as binary vectors. Numerical features 
were standardized using z-score normalization to ensure all 
variables were on the same scale.  

Each regression model was trained on a subset of the da-
taset and evaluated using appropriate performance metrics, 
such as mean squared error (MSE) and coefficient of deter-
mination (R²). Cross-validation was employed to assess the 
models' generalization performance on unseen data. The hy-
perparameters of each model were fine-tuned using grid 
search with cross-validation to identify the optimal combi-
nation of hyperparameters that maximized predictive perfor-
mance. All models were implemented using the scikit-learn 
library [20] in Python. Five models were selected to compare 
their performance when trained on the dataset: gradient 
boosting machines (GBM), multi-layer perceptron (MLP), 
support vector machines (SVM), random forest regressors 
and k-nearest neighbors (kNN). 

 
3. Results and Discussion 

In total, 610 different line-like textures were fabricated 
using the DLIP technique. Both pico- and nanosecond DLIP 
was used and the period Λ was varied between 4 and 12 µm. 
The structure depth was varied by adjusting the process pa-
rameters such as the hatch distance, the number of pulses 
and pulse fluence (see experimental section). An overview 
of all textured samples is given in Table 1.  
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Table 1 Overview over different textures. 

 

Pulse  
duration 

Texture 
type 

Spatial peri-
ods (Λ) 

Number of 
textures 

15 ns  Lines 

4 
5 
6 
7 
8 

105 
25 
50 
25 
25 

10 ps Lines 

4 
6 
8 
10 
12 

25 
50 
25 
25 
25 

 
All fabricated topographies were measured using a 

CLSM and analyzed using Surfalize. For this purpose, the 
topographies are leveled and filtered with low-pass filter at 
a cutoff wavelength of 0.8 µm. In a batch operation, all avail-
able roughness parameters from ISO 25178 implemented in 
Surfalize, as well as the structure depth (d), aspect ratio (AR) 
and texture homogeneity (H) were computed. 

The difference of the surface topographies obtained with 
nano- and picosecond DLIP can be observed in Figure 1, 
which shows two produced line-like structured surfaces with 
a spatial period of 8.0 µm and a structure depth of approxi-
mately 4 µm. The nanosecond structure features a single-
scale topography with protrusions that are caused due to the 
melting-dominated nanosecond material interaction [21]. 
The picosecond DLIP structured surface exhibits a more uni-
form depth modulation that more closely corresponds to the 
sinusoidal intensity distribution of the interference pattern. 
This is likely related to the reduced melt pool and increased 
direct evaporation during picosecond DLIP [22]. More dif-
ferences between the pulse durations can be observed 
through different roughness parameters from ISO 25178 [9]. 

For instance, the meassured skewness Ssk of the ns-DLIP 
surface was 0.50 µm³, indicating a stronger distribution of 
material towards the upper parts of the surface. In case of the 
ps-DLIP texture, a close to equal distribution with a value of 
-0.06 µm³ was calculated. On the other hand, the surfaces 
exhibit a very close match of the developed surface area Sdr 
with a value of ~167%.  

For each spatial period, one or multiple matrices of tex-
tures were fabricated, which consist of a variation of the la-
ser fluence and number of pulses. Figure 2 shows the analy-
sis of such a matrix on the example of a nanosecond process 
with a spatial period of 8.0 µm and a hatch distance of 32 µm. 
Using Surfalize, both the structure depth (Figure 2a) and the 
pattern homogeneity (Figure 2b) were evaluated and plotted 
as a false color heatmap. It can be observed that the structure 
depth increased predominantly with the number of pulses 
and only slightly with increasing fluence. The largest texture 
depth of approximately 7 µm was generally observed for the 
highest number of pulses (14) and a relative high laser flu-
ence of 1.47 J/cm².  

On the other hand, the homogeneity follows a different 
trend. It increases initially with increasing fluence and num-
ber of pulses, but sharply reduces again towards the maxi-
mum number of pulses and fluence in the upper right (see 
Figure 2b). A region of optimal homogeneity is visible 
around the center region (1.38 J/cm², 8 pulses) as well as 
lower fluence and high number of pulses. The origin of the 
different homogeneity values can be understood from the 
confocal images in Figure 2c-e corresponding to datapoints 
in the lower left, center and upper right of the matrix. For 
low number of pulses and fluence, the initial surface rough-
ness still contributes significantly to the topography in the 
form of randomly distributed lines perpendicular to the 
DLIP topography. In the center, the DLIP process has re-
moved the initial roughness, and the structures are well de-
fined, leading to homogeneity values above 0.90. However, 
in the upper right region large number of pulses and high 

 
Fig. 1  Comparison of confocal measurements and profiles of a) ns-DLIP and b) ps-DLIP surface textures with a period of 8 µm and 
an average depth of approximately 4 µm.  
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laser fluence), the texture starts to be characterized by melt-
ing due to heat accumulation, which results in randomly dis-
tributed protrusions and localized filling of the structure val-
leys by molten material, contributing to a more inhomoge-
neous surface. 

To predict the resulting topography in terms of its char-
acteristic roughness parameters from ISO 25178 as well as 
depth, aspect ratio and homogeneity, five different machine 
learning models (RFR, GBM, MLP, SVM, KNN) were 
trained on the topographical and laser parameters. The best 
fit plots for each model on the example of the arithmetic 
mean height (Sa) are shown in Figure 3, ordered by best to 
worst fit quality as measured by both MSE and R². As it can 
be observed, the RFR results in a highly accurate prediction 

with an R² of 0.93, closely followed by the GBM with an R² 
of 0.92. The MLP also performs well, but less accurate with 
an R² of 0.83. On the other hand, SVM and KNN only ex-
hibit moderate predictive accuracy with R² values of 0.67 
and 0.57, respectively, with predictions deviating signifi-
cantly in the larger roughness range above 1 µm. 

This result can be explained by the robustness of RFR 
and GBM in regards to noisy data and their excellent ability 
to handle nonlinear relationships [23]. These are character-
istics well suited to predict the complex relationship between 
roughness parameters and laser process parameters, which 
are known to follow nonlinear relationships [10]. On the 
other hand, SVN and KNN can struggle with non-linearities 
and noisy data [23]. 

 
Fig. 2  Peak-to-valley (a) structure depth and (b) homogeneity as a function of fluence and number of pulses for DLIP textures fabricated 
with a nanosecond laser and a spatial period of 8 µm and a hatch distance of 32 µm. Confocal measurements of three different surfaces 
(c-e) exemplify the difference in morphology in terms of depth and homogeneity for different parameter combinations, where the central 
topography fabricated with 8 pulses and a fluence of 1.38 J/cm² features the highest homogeneity.  

 

 

 
Fig. 3  Best fit plots showing the relationship between the actual and predicted values on the example of the arithmetic mean height 
(Sa) when using the five different models (RFR, GBM, MLP, SVM, KNN). The RFR achieves the best predictive accuracy with a 
coefficient of determination R² of 0.93. 
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Figure 4 shows the performance of the five investigated 
machine learning models in terms of the resulting coefficient 
of determination R² across all roughness parameters calcu-
lated by Surfalize, including the available ISO 25178 param-
eters as well as the self-defined parameters depth, aspect ra-
tio and homogeneity. The models are sorted from best to 
worst performance averaged over all parameters, resulting in 
the same order as already observed for the arithmetic mean 
height in Figure 3. Moreover, it can be observed that the am-
plitude related parameters such as most height parameter 
family from ISO 25178 (Sa, Sq, Sp, Sv, Sz) as well as the depth 
and aspect ratio are very predicted with comparatively high 
accuracy by all models.  

Similarly, the homogeneity was predicted very well by 
all models except SVM. This suggests that there is a clear 
relationship between the laser process parameters and these 
aspects of the resulting topography. On the other hand, the 
models for predicting Ssk and Sku almost exclusively reached 
negative R² values, which indicates an extremely poor pre-
dictive performance (worse than predicting the mean of the 
dataset in all instances). This could be related to inappropri-
ate feature engineering or too small datasets for this type of 

parameter. However, it is worth noting that Ssk and Sku de-
pend on the amplitudes third and fourth power, respectively, 
and are thus quite susceptible to small changes in the mor-
phology. A typical distribution for Sku for a matrix as shown 
in Figure 2, which follows a clear trend in depth and homo-
geneity, can typically feature an apparently random distribu-
tion of Ssk and Sku, which indicate the skewness and kurtosis 
of the structure. Therefore, there might simply not be a direct 
relationship between the laser parameters and the values of 
the skewness and kurtosis, which might rather depend on 
random processes such as local melt agglomerations.  

In contrast to the the amplitude quantities, the functional 
parameters are predicted only with moderate accuracy by 
RFR and GBM, with R² values generally above 0.5, except 
for the core height Sk. The significantly better predictive 
performance for the core height is likely to be related to its 
high degree of correlation with the amplitude related param-
eters. Moreover, the definition of Sk makes it particularly ro-
bust against outliers, reducing noise and influence of random 
processes in the structure formation on the distribution of Sk 
values. On the other hand, quantities such as the reduced 
peak height Spk and reduced dale height Svk can be quite dif-
ferent depending on the formation of localized melt protru-
sions on the surface, which can even vary depending on the 
selected measurement area. The functional volume parame-
ters (Vmp, Vmc, Vvv, Vvc), which are also defined on the Ab-
bott-Firestone curve, are much more accurately predicted by 
RFR and GBM compared to the regular functional parame-
ters.  

Lastly, successfully trained models such as the RFR 
were employed to estimate the importance of the process pa-
rameters to the target topographical quantity. Figure 5 shows 
the feature importance on the example of a RFR trained on 
the relationship between the laser process parameters and the 
structure depth (in blue) as well as the homogeneity (in or-
ange). As can be observed, the dominant predictor of both 
parameters is the structure period, which at first glance 
might seem counterintuitive. However, in the case of DLIP, 
this can be explained by as follows: due to the thermal dif-
fusion between two adjacent interference maxima in the ma-
terial, the material can only withstand a certain amount of 
cumulated fluence before extensive melting reduces struc-
ture homogeneity and depth [24]. For metals treated with na-
nosecond pulses (10-20 ns), the thermal diffusion length can 
lie around ~1 µm [24]. Therefore, larger spatial periods also 
generally allow for greater structure depths [25], making the 
period the most important determinant for the achievable 
structure depth. Moreover, both the hatch factor and laser 

 
Fig. 4  Heatmap of the coefficient of determination (R²) as a measure of model fit quality for all five investigated models 
and all investigated roughness parameters. The models are ordered from best to worst average performance. 

 

Fig. 5  Feature importance of the laser parameters extracted from 
trained RFR model for the structure depth d (R² = 0.91) and ho-
mogeneity H (R² = 0.86).  
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fluence play a significant role in determining homogeneity 
than structure depth. This is likely related to the emergence 
of a second modulation for too large hatch distances [25], 
adversely impacting homogeneity, and high fluences leading 
to increased melting. 

 
4. Conclusions 

In this work, we show how the self-developed Python 
library Surfalize and machine learning can be employed to 
predict surface roughness of DLIP-textured stainless steel 
specimens. After fabricating more than 600 different DLIP 
textures with different laser parameters, the measured topog-
raphies were evaluated by the self-developed Python library 
Surfalize, in terms of standardized roughness parameters and 
self-defined features such as structure depth and homogene-
ity. Using different machine learning algorithms, we demon-
strated the possibility to predict topographic characteristics 
from the laser parameters and extract feature importance. 
Notably, we showed that random forest regressors and gra-
dient boost machines resulted in high predictive accuracy for 
a wide range of settings, whereas support vector machines 
and k-nearest neighbors did not prove to be suitable for this 
task. Lastly, this work demonstrated the efficacy of the Sur-
falize to integrate surface roughness analysis into the Python 
machine learning toolchain. 
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