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In this study, we developed a machine-learning framework to predict the success of ultrafast laser
microwelding of glass substrates based on plasma-emission spectra and laser-processing parameters.
Ten-millimetre linear welds were produced under varying laser power, repetition rate, and scanning
speed. The emission spectra collected during welding, combined with the corresponding processing
conditions, were used to train support vector machine (SVM) and neural network (NN) classifiers.
Both models demonstrated strong predictive performance, achieving over 80% accuracy on test data.
Although a slight decrease in accuracy was observed on newly acquired data, this result highlights
the potential for further improvement through data diversification. By expanding the dataset and in-
corporating environmental factors such as temperature and humidity, we aim to enhance the robust-
ness and generalisation capability of the models. This approach offers a promising path toward im-
proving the reliability and efficiency of ultrafast laser microwelding processes.
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1. Introduction

Laser processing is a non-contact energy delivery
method that enables highly precise and controllable machin-
ing. Its strong compatibility with numerical control (NC)
systems has accelerated adoption across fields ranging from
automotive manufacturing to electronics and medical de-
vices. By selecting an appropriate laser type, wavelength,
and pulse duration, laser processing can accommodate a
wide variety of materials and applications, making it espe-
cially attractive for high-value microfabrication.

This study focuses on femtosecond laser processing,
which employs ultrashort pulses on the order of 107" s. Be-
cause the interaction time is extremely brief, femtosecond
lasers minimize thermal loading and greatly reduce side ef-
fects such as thermal deformation, cracking, and melting. As
a result, they enable high-precision machining even for dif-
ficult-to-process materials, such as brittle substrates and ul-
tra-hard alloys.

One particularly promising application is the welding of
transparent materials such as glass. Conventional methods
usually require intermediate absorbing layers to match the
laser wavelength. Recent advances in ultrafast laser mi-
crowelding eliminate this requirement by tightly focusing
femtosecond or picosecond pulses at the interface between
two transparent substrates. Non-linear effects—multiphoton
absorption and tunnelling ionization—produce localized
melting, and subsequent resolidification creates a direct
bond [1].

This technique is well suited to optical components and
microfluidic devices, where highly localized and precise
bonds are essential. Achieving consistent quality, however,

remains challenging because material properties such as
melting point, thermal conductivity, and optical transmit-
tance vary among substrates. Even under identical pro-
cessing conditions, satisfactory results are not guaranteed.
Key parameters—including pulse energy, repetition rate,
wavelength, pulse duration, numerical aperture of the focus-
ing lens, and scan speed—significantly influence the weld-
ing outcome.

To address these challenges, Fujiwara et al. investigated
optical emission near the focal point during glass welding
and proposed a method for evaluating the welding state. By
extracting video frames at regular intervals and analyzing
their RGB values, they showed that variations in the blue
component correlate with melting, while the temporal emis-
sion profile depends on interfacial conditions such as the
glass-to-air ratio [2].

In recent years, machine learning techniques have been
increasingly employed in the field of laser processing [3-5].
Furthermore, several studies have investigated the evalua-
tion of welding quality by analyzing the optical emission
spectra of plasma generated during the processing [6].

Building on this foundation, the present study combines
plasma-emission spectra with laser processing parameters—
average power, repetition rate, pulse duration, scan speed,
and ambient pressure—and analyzes them using machine
learning. This data-driven approach aims to reduce trial and
error in parameter selection and to realize a more stable, ef-
ficient ultrafast laser microwelding process.
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2. Methodology
2.1 Experimental setup and materials

The optical system used in this experiment is illustrated
in Figure 1. The laser beam emitted from the source was di-
rected through a series of optical components, including a
mirror, a half-wave plate, a polarizer, and an objective lens
(10x magnification, NA (numerical aperture) = 0.25), before
being focused onto the sample. The laser output was con-
trolled using the half-wave plate and polarizer, and the aver-
age power was measured with a power meter. A spectrome-
ter was installed to monitor the optical emission generated
during the laser microwelding process.

The spectrometer was capable of detecting wavelengths
ranging from 339.59 nm to 1023.98 nm, with a spectral res-
olution of 0.38 nm.

To securely hold the glass substrates during processing,
a custom-designed jig was employed. This jig, actuated by
an air cylinder, applied pressure to the two glass substrates
during welding. A schematic diagram of the jig is presented
in Figure 2. The glass substrates used in this study were
made of SCHOTT B270 glass, with dimensions of 50 mm x
50 mm and a thickness of 1 mm. The thickness of the glass

was first measured using a caliper with a resolution of 50 pm.

Subsequently, the glass was placed in the jig and clamped
using an air cylinder, after which the combined thickness of
the glass and the jig was measured. The thickness of the jig
in this measurement was 3.50 mm. The results are summa-
rized in Tables 1 and 2.

From these results, it can be concluded that no gap larger
than 50 um was present.

The interference fringes were observed under white-
light illumination, and the images were recorded through a
520 nm bandpass filter (FWHM (full width at half maxi-
mum) = 35 nm).
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Fig. 1 Schematic of the optical setup for ultrafast laser mi-
crowelding and measurement of plasma-emission spec-
tra.
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Fig. 2 Schematic of the air-cylinder-actuated jig used to press
the glass substrates during welding.

Five photographs were taken, and the images were post-
processed to enhance the visibility of the interference fringes.

Assuming the light to have a wavelength of 520 nm, the
optical path difference corresponding to one wavelength is
520 nm. Therefore, the spacing between adjacent fringes
corresponds to half of this value, i.e., 260 nm.

In the case with the largest number of fringes, shown in
Fig. 3(a), ten fringes can be observed from the center toward
the edge. Accordingly, the optical path difference is esti-
mated to be 260 x 10 = 2600 nm, indicating that the maxi-
mum gap between the glass substrates is approximately 2.6
pm.

For Fig. 3(d), six fringes are observed, corresponding to
an optical path difference of 260 x 6 = 1560 nm, i.e., a gap
of approximately 1.56 pm.

To adjust the focus, an approximate focal position was
first obtained, after which the height was varied in 10 pm
increments. The welding experiments were then conducted
at the central position within the range where successful
bonding was achieved. These procedures ensured that the
experiments were carried out under stable and reproducible
conditions.

2.2 Experimental Procedure
The welding conditions used in this study are described
below. Two glass substrates were fixed in the custom jig de-
scribed above and compressed at a pressure of 0.225 MPa.
The laser beam was focused at the interface between the two
glass substrates, and linear welding was performed by trans-
lating the stage over a distance of 10 mm while irradiating
the sample.
The laser used in the experiment had a wavelength of
1030 nm and a pulse duration of 190 fs. The average power,
repetition rate, and scanning speed were varied as shown in
Table 3, resulting in 120 different parameter combinations.
Each condition was tested twice, yielding a total of 240
welding trials. During each welding process, optical emis-
sion spectra were recorded using a spectrometer. For each

Table 1 The thickness of the glass.

Sample number Thickness [mm]
1 1.00
2 1.00
3 1.00
4 1.00
5 1.00
6 1.00
7 1.00
8 1.00
9 1.00
10 1.00

Table 2 Thickness of the glass after being clamped in the jig
and pressed with the air cylinder.

Sample number | Thickness [mm]
1-2 5.50
34 5.50
5-6 5.50
7-8 5.50
9-10 5.50
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sample, 20 spectra were acquired per welding operation.
Welding success was determined based on two primary
criteria. The first was the formation of Newton’s rings on the
welded sample. Newton’s rings are interference fringes that
appear at the interface between two flat glass surfaces
due to optical interference. When the contact between the

(c) 5-6

d) 7-8

(e)9-10
Fig. 3 Interference fringes in the stacked glass.

substrates is sufficiently close, the air gap becomes thin
enough to allow interference, resulting in concentric or
striped fringe patterns. The clear presence of Newton’s rings
indicates minimal interfacial voids and intimate bonding,
and thus serves as an indicator of successful welding.

The second criterion was the presence or absence of de-
lamination when a small external force was applied to the
bonded region. Specifically, the sample was gently pressed
by hand to observe whether the bonded interface separated
or shifted. If the bonding strength was insufficient, even a
light manual force could cause delamination. In contrast, a
bond with adequate mechanical strength would remain intact
under such conditions. A welding trial was considered "suc-
cessful" only when both of these criteria were satisfied.

To obtain a reference for the mechanical strength of the
welds, shear force measurements were conducted on the
samples welded under two extreme parameter sets selected
from the 240 conditions:

e The condition that produced the longest actual
welded length (1.5 W, 590 kHz, 1.5 mm/s), and

e The condition that produced the shortest actual
welded length (1.2 W, 590 kHz, 0.25 mm/s).

For each condition, three samples were prepared. The
welded glass samples were mounted on a mechanical testing
apparatus, and shear force was measured using a digital
force gauge while the electric stage was moved at a constant
speed of 2 mm/s (Fig. 4 and Fig. 5).

2.3 Machine learning

To minimize the influence of non-plasma-related emis-
sions, the spectra obtained during the welding process were
baseline-corrected by subtracting the spectra measured un-
der conditions with no plasma emission. Using the corrected
spectra, we constructed a dataset consisting of

Table 3 Processing conditions.

Wavelength [nm] 1030
Pulse width [fs] 190
NA 0.25

Spot diameter [um]

5

Power [W]

0.5,0.75,1.0, 1.2, 1.5, 1.75

Repetition rate [Hz]

100k,200k,590k, 1M

Scanning speed [mm/s]

0.1,0.25,0.5, 1.0, 1.5

Digital force meter

Glass substrates
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Fig. 4 Method for measuring shear force.
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Fig. 5 Direction of shear force.
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approximately 20 spectra per welding trial for all 240 weld-
ing conditions (120 parameter sets, each repeated twice).
Each spectrum was paired with its corresponding processing
parameters: average power, repetition rate, pulse energy,
scanning speed, and applied pressure.

The dataset was randomly divided into training and test-
ing subsets, with 70% used for training and 30% used for
testing. Machine learning models were then trained to pre-
dict whether the welding was successful or not based on
these input features.

Two algorithms were employed in this study: Support
Vector Machine (SVM) and Neural Network (NN). The
SVM is a supervised learning algorithm that is particularly
effective for classification tasks and can model nonlinear re-
lationships using kernel functions. The NN model used here
was a feedforward neural network consisting of an input
layer with 2,025 units, followed by two hidden layers with
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Fig. 6 Optical microscope image showing representative welding re-

sults obtained under multiple processing conditions.
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Fig. 7 Comparison of shear force for welds produced under the con-
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Fig. 8 The measured spectra

128 and 64 units respectively, and a single-unit output layer
for binary classification.

All machine learning models were implemented in Py-
thon 3.11.12. The SVM was developed using the scikit-learn
library, whereas the NN was constructed with tensor-
flow.keras, with data preprocessing carried out using scikit-
learn. To mitigate overfitting, an early stopping strategy was
incorporated during the NN training process. Model devel-
opment and training were performed in the Google Colab
environment.

3. Results
3.1 Welding results
An example of welding outcomes obtained under multi-
ple processing conditions is shown in Fig. 6. In this case, the
laser parameters were fixed at 1.2 W and 1 MHz, while the
scanning speeds was varied across 0.1, 0.25, 0.5, 1.0, and 1.5
mmy/s. The corresponding shear force measurements in dif-
ferent loading directions are shown in Fig. 7.

As illustrated in Fig. 6, clear Newton’s rings were ob-
served, indicating that successful welding was achieved.
According to the shear strength results, the average joint
strength in the longitudinal direction was approximately —
30 N, while in the lateral direction it exceeded —40 N.
These findings suggest that the joint strength was higher
when the load was applied laterally. Note that in this con-
text the negative sign denotes that the applied force acts in
the opposite direction (rightward) when the leftward direc-
tion is defined as positive in the coordinate system.

3.2 Machine learning

The measured spectra are shown in Fig. 8. The experi-
mental conditions correspond to the longest actual welded
seam obtained (1.5 W, 590 kHz, 1.5 mm/s) and to the
shortest actual welded seam obtained (1.2 W, 590 kHz,
0.25 mm/s). Figures 9 and 10 present the confusion matri-
ces and the evaluation metrics used to assess the perfor-
mance of the trained models on the test dataset. The num-
ber of epochs until convergence for the NN training was
61, as determined by the early stopping criterion. A brief
explanation of the evaluation metrics employed in this
study is provided below:

Accuracy refers to the proportion of all predictions that
were correctly classified. It is the most fundamental met-
ric for evaluating overall model performance. However,
in cases where the dataset is imbalanced, accuracy alone
may not adequately reflect the true effectiveness of the
model and should therefore be interpreted alongside other
metrics.

Precision indicates the proportion of instances predicted
as positive (i.e., “successful welding”) that were actually
positive. It reflects the reliability of the model’s positive
predictions. A higher precision value implies fewer false
positives and greater confidence in the model’s output.

Recall (also known as sensitivity) measures the propor-
tion of actual positive instances that were correctly iden-
tified by the model. A higher recall indicates a lower like-
lihood of missing successful welds, which is particularly
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Fig. 9 Confusion matrix and evaluation metrics of the SVM model
on the test dataset.
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Fig. 11 Confusion matrix and evaluation metrics of the SVM
model on another dataset.

important in applications where safety or quality is critical.

F1-score is the harmonic mean of precision and recall. It
provides a balanced evaluation that penalizes models with
high precision but low recall (or vice versa). This metric
is particularly useful when dealing with class imbalance
or when the cost of different types of misclassification
varies between classes.

By collectively evaluating accuracy, precision, recall,
and F1-score, we were able to comprehensively assess how
accurately and reliably each model could predict welding
outcomes.

The two machine learning models developed in this
study—Support Vector Machine (SVM) and Neural Net-
work (NN)—were compared based on these metrics.

The SVM model achieved high values (>0.80) across
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Fig. 10 Confusion matrix and evaluation metrics of the NN model
on the test dataset.
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Fig. 12 Confusion matrix and evaluation metrics of the NN model
on another dataset

all four evaluation metrics, indicating excellent overall

classification performance. Notably, both precision and re-
call remained consistently high, demonstrating that the
model maintained a favorable balance between prediction
reliability and detection sensitivity.
In contrast, the NN model achieved a comparable level of
accuracy to that of the SVM; however, its precision was
somewhat lower, suggesting reduced reliability in predicting
successful welding outcomes and higher incidence of false
positives. Nevertheless, the NN exhibited higher recall than
the SVM, indicating a lower likelihood of missing actual
successful welds—an advantage in applications where min-
imizing oversight is critical.

In summary, both the SVM and NN models demon-
strated sufficient predictive capability, confirming their use-
fulness for predicting the success or failure of ultrafast laser
microwelding processes.
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3.3 Validation with experimental data

To evaluate the generalizability of the developed models,
we tested them on a separate set of 120 newly acquired ex-
perimental data samples. The corresponding confusion ma-
trix and evaluation metrics for this validation are presented
in Fig. 10 and Fig. 11, respectively.

As shown in Fig. 10 and Fig. 11, both models maintained
a high level of overall classification performance, as indi-
cated by the accuracy metric. However, in terms of the
model’s ability to correctly identify samples that should be
classified as "successful welding"—as reflected by recall—
the neural network (NN) model demonstrated a relatively
better performance than the support vector machine (SVM).

In contrast, the precision values for both models were
nearly equivalent and remained at a moderate level, suggest-
ing that the reliability of positive predictions—i.e., the pro-
portion of predicted successful welds that were actually suc-
cessful—was limited. This indicates that while the models
were capable of correctly identifying many successful cases,
a substantial number of false positives remained.

Nonetheless, the relatively high recall of the NN model
implies that it is more effective at detecting actual successful
welding events without overlooking them. This highlights
its potential utility in applications where failing to detect true
positive could have critical consequences.

4. Discussion

In this study, we proposed and validated a machine learning-
based approach to predict the success or failure of ultrafast
laser microwelding by utilizing plasma emission spectra
generated during the process, in combination with laser pro-
cessing parameters. Although the trained models achieved
high prediction accuracy on the test dataset, their perfor-
mance declined noticeably when evaluated on newly ac-
quired experimental data.

One primary factor contributing to this decline in the
limited size and diversity of the training dataset. In machine
learning, a sufficiently large and varied dataset is essential
for enhancing a model’s generalization capability. This is es-
pecially important in complex systems involving multiple
interdependent variables such as laser power, scanning
speed, applied pressure, and emission spectra. Capturing the
full range of variability in such multidimensional relation-
ships requires a broader and more comprehensive dataset.
Another factor that may have affected model performance is
the temporal gap between the acquisition of the training and
test data. It is well known that laser processing is highly sen-
sitive to external conditions, including ambient temperature,
humidity, equipment stability, and even minor changes in the
optical path. As a result, even under identical parameter set-
tings, the intensity and shape of the emission spectra may
vary depending on environmental conditions at the time of
measurement, potentially leading to prediction errors.

5. Conclusion
In this study, we aimed to explore optimal conditions for ul-
trafast laser microwelding of glass substrates by analyzing
plasma emission spectra and corresponding laser parameters
using machine learning techniques.

The results demonstrated that our models achieved high

classification performance on the test dataset, with an accu-
racy exceeding 80%, indicating strong predictive capability
during the training phase. However, when applied to newly
acquired experimental data a significant drop in precision
was observed, revealing limitations in the model’s reliability
under varying experimental conditions.

This discrepancy is likely attributable to several factors,
including environmental fluctuations during experimenta-
tion, dataset bias, and potential model overfitting. To ad-
dress these issues, future efforts will focus on expanding the
dataset to cover a broader range of conditions and incorpo-
rating environmental parameters such as temperature and
humidity. These enhancements are expected to improve both
the generalization ability and robustness of the predictive
models in real-world applications.

In addition, we plan to extend the model's capabilities
beyond binary classification of welding success, to enable
prediction of quantitative quality metrics such as weld length
and shear force.

These advancements will enhance the practical applica-
bility of our approach and contribute to the further develop-
ment of ultrafast laser microwelding technology, ultimately
facilitating the realization of intelligent, adaptive process
control systems.
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