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Qualification of an Automatic Laser Beam Focus Monitoring
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We report on an automatic laser beam focus monitoring approach for an ultrashort pulsed laser
robot system. The system integrates an ultrashort laser mounted on a link of a six-axis industrial ar-
ticulated robot with a galvanometer scanner and an F-Theta lens mounted on the end of the last robot
axis. This enables high precision micromachining using ultrashort pulsed laser over a large 3D pro-
cessing area. A beam focus monitoring and adjustment method combining a distance sensor and cam-
eras ensures consistent processing quality during extensive robot movement. A conventional beam
focus monitoring algorithm based on image processing is compared with a deep learning-based
method using YOLO object detection network, where a high accuracy is particularly observed using
YOLO network-based method. In addition, the methods are implemented in the system and utilized
for the beam focus monitoring for an ablation process of fused silica, with varying the processing
surface orientations. Both methods demonstrate the capability for a correct beam focus detecting with
surface orientations ranging from -30° to 15°, while maintaining the beam propagating axis parallel

to the surface normal.
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1. Introduction

Ultrashort pulsed (USP) lasers with their nonlinear ma-
terial-radiation interaction mechanisms, such as multiphoton
absorption and avalanche ionization have been intensively
studied in medical applications [1, 2], scientific research [3,
4] and industry [5, 6]. In comparison to conventional long-
pulse lasers, USP lasers have pulse durations in the picosec-
ond and femtosecond range, which is typically shorter than
the thermal conduction timescale. This minimizes thermal
effects and damage to the surrounding material during laser
material processing. Additionally, small beam spots enable
high-precision micromachining. These characteristics make
USP lasers essential for micro and nanoscale processing of
sensitive materials, such as, e.g., semiconductor [7], dielec-
trics [8] and insulating materials [9, 10].

Due to the nonlinear interaction mechanisms, USP laser

processing exhibits a high sensitivity on beam focus position.

For example, in two-photon polymerization, precise control
of beam focus is essential to expose the resin selectively and
form the designed structure accurately, as the two photon ab-
sorption process initiates only when the exposure dose ex-
ceeds a specific polymerization threshold [11]. In direct
wave guide writing [12], 3D wave guide structures are di-
rectly modified in a transparent substrate by accurately po-
sitioning the beam focus at the desired location in the mate-
rial. Focusing the beam on the backside of the transparent
material facilitates a so-called bottom-up machining
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approach, which enhances process capability and quality [13,
14]. Additionally, precise beam focusing positioning plays
also arole in conventional top-down processes. A shift in the
beam focus increases the beam diameter on the substrate sur-
face, resulting in a reduction of fluence, which in turn, leads
to a low ablation depth while maintaining constant beam
pulse energy. However, with remaining the same fluence, the
ablation rate is improved using a defocused beam [15, 16].

To ensure process accuracy, a variety of sensors are em-
ployed for the purpose of monitoring and adjusting the laser
beam focus during USP laser processing.

Acoustic and optical microphones are typical sensors
used for real-time focus position adjustment, since the gen-
erated acoustic emissions during laser processing depend
sensitively on the beam focus position. The correlation be-
tween the beam focus and acoustic emission is consequently
applied to ascertain the position of the beam focus during the
process [17].

In the context of rapid advancements in image sensing
and processing technologies, also cameras have been used in
in-situ laser focus adjustment. Cao et al°[18] separated the
laser beam using a two-holes mask and determined beam fo-
cus position through measuring the beam spot spacing using
cameras. Based on the captured spot spacing, the defocused
beam was then corrected by a three-lens focus shifting sys-
tem. In addition, the same research group applied a CCD
camera to capture the reflection of the beam spot from a



JLMN-Journal of Laser Micro/Nanoengineering Vol. 21, No. 1, 2026

tilted surface. The defocused beam exhibited a comma shape
on the sensor, while the beam assumed an ellipse form as the
beam was focused on the surface [19].

Du et. al [20] determined the beam focus using a quarter
circular knife and an annular diffractive optical element. The
generated beam shapes were captured by a CCD camera,
where the circular form indicated that the beam was focused
on the surface. The system achieved a detection accuracy of
100 nm within a range of 76 um.

During the last decades, artificial intelligence has played
an increasingly important role across various fields, particu-
larly in object detection and classification. [21, 22]. In par-
ticular, YOLO (You Only Look Once) [23] has been widely
used in real-time applications due to its efficiency in object
detection. Jiang et al. [24] developed a lightweight model
based on YOLO-V4 model, reducing the number of param-
eters to one-tenth of the original model. This optimization
significantly enhanced training and prediction efficiency.
The model with one third of the original training time
achieved a precision of 92%, which is only 4% lower than
the original model for a real-time ship detection. Zhou [25]
developed an enhanced model YOLO-NL (You Only Look
Once and None Left) based on YOLOX. The model with the
improved CSPNet (Cross Stage Partial Network), a new
SSPP (Serial Spatial Pyramid Pooling network) and the op-
timized PANet exhibited a 2.64% improvement in
mAP (mean Average Precision) as well as a higher detection
efficiency compared to the original model for a real-time
face mask detection.

Recently, the authors introduced an ultrashort pulsed la-
ser robot (USPLR) system for large area 2D and 3D microm-
achining [26, 27]. The USP-laser is integrated into one link
of a six-axis industrial articulated robot. The laser beam is
guided by optical components along the robot axes arriving
at the last axis, on which a scanner consisting of two galva-
nometer deflectors and an F-Theta are mounted for the pro-
cessing. In such an approach, an automatic focus monitoring
before and during the process with substantial robot 3D
movements is essential to maintain the processing precision
using USPLR system. However, the current existing beam
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focus monitoring methods rely on a stable positioning of
sensors and are suitable only for the laser source without
movement during the process. In addition, YOLO models
with high detection efficiency and tolerance of environmen-
tal deviation show potential for enhancing the accuracy of
beam focus monitoring for the USPLR system. Thus, a flex-
ible focus monitoring and adjustment approach for 3D pro-
cessing using the USPLR system is discussed in this contri-
bution.

The system structure as well as the beam guidance is il-
lustrated in section 2. The beam focus monitoring and ad-
justment method is described in section 3. For focus moni-
toring using USPLR system, a conventional image pro-
cessing-based algorithm is compared with a deep learning-
based YOLO object detection model in section 4. Subse-
quently, an ablation on fused silica with various surface ori-
entations is discussed.

2. Experimental

As illustrated in Fig. 1, the USPLR system is composed
primarily of a six axis industrial articulated robot (IRB
2600ID-8/2.00, ABB) and a 1030 nm USP laser (CB3-40W,
Light Conversion) mounted between Axis3 and Axis4. The
laser beam guided by mirrors propagates along the subse-
quent robot axes. After arriving at Axis6, the laser beam is
deflected and focused by a scanner consisting of two 2D gal-
vanometer deflectors (RTAX-A15 and RTAY-A15, Newson)
and a telecentric F-Theta lens with a focal length of 160 mm
(JENar Silverline F-Theta, Jenoptik). A cascade beam stabi-
lization system is integrated into the USPLR system. Each
stage of stabilization system consists of two cameras and
two mirrors, in which the mirror is aligned by a piezoelec-
trical inertial actuator (PIAK10, Thorlabs) pair in the x and
y direction according to the beam position captured by the
camera. The first stage consists of M1 and M2 as well as
Caml and Cam2 (2x DMK 37AUX250, The Imaging
Source), M5 and M6 as well as Cam3 and Cam4 (2x DMK
38UX541, The Imaging Source) contribute to the second
stage. Beam stabilization subpresses the beam misalignment
and ensures a high overlap of the current beam alignment to
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Fig. 1 Illustration of the USPLR system. An USP laser is fixed on the robot between Axis3 and Axis4. The laser beam is guided by
mirrors, propagating cross axes as well as a 2D galvanometer scanner and an F-Theta lens mounted on Axis 6. A confocal sensor and a

camera mounted on Axis6 are used for beam focus monitoring.
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the optimal beam alignment propagating cross robot axes
during the 3D processing. This limits total beam deviation
of both cameras to under 55 um (further details are pub-
lished in Ref. [28]).

Round polished fused silica (En08, GVB solutions in
glass) specimens with a diameter of 26.8 mm and thickness
of 9.2 mm were applied for a 2x2 mm square cavity ablation
in the experiment. A pulse duration of 239 fs, a repetition
rate of 200 kHz and a fluence of 2.49 J/cm? were used in the
ablation process. The beam diameter was measured in
64 um (1/e?). A cavity is ablated by 30 laser passes. In each
laser pass, the scanner deflects beam along hatch lines, re-
maining a constant beam spot overlap of 75% along and be-
tween the hatch lines. Additionally, a rotation of 100° on
hatch line direction between each layer pass ensures a ho-
mogeneous ablation process. The ablation depth and the av-
erage surface roughness R, were measured by a laser scan-
ning microscope (LSM VK-X3000, Keyence).

3. Method

3.1 Focus monitoring on the USPLR system

Precise beam focus positioning ensures the quality of the
laser process with substantial robot movements in the 3D
processing area. Using the USPLR system, the laser propa-
gating axis behind the F-Theta lens remains parallel to the
normal of processing surface during the 3D process, which
thus avoids the inhomogeneous fluence distribution and en-
hances process efficiency.

The focus monitoring method is shown in Fig. 2. The
movement of the robot system between confocal sensor,
scanner and camera remains parallel to the processing sur-
face. In another word, the beam propagating axis behind F-
Theta lens is parallel to the processing surface normal during
the movement. The focus adjustment for the initialization of
the process consists of three steps:

1. The robot adjusts the distance between F-Theta lens and
processing surface using a confocal sensor (CL-L070,
Keyence). The confocal sensor remains parallel to the
processing surface normal. (Fig. 2(a)).

2. A mask is written by laser for the set distance adjust-
ment. Each mark in the mask represents an offset step
and is written using laser after robot moved one offset
step along the surface normal. A mask is completed
once the robot moves across the entire offset range. (as
illustrated in Fig. 2(b)). The negative offset means the
distance between F-Theta lens and processing surface
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Fig. 2 Beam focus monitoring and adjustment steps of
USPLR system. (a) Robot moves the confocal sensor to the
processing area and adjusts the distance between specimen
surface and F-Theta lens along the processing surface normal.
(b) A mask for set distance adjustment is written using laser.
Robot moves F-Theta lens along the surface normal across an
offset range. (c) Robot moves camera to the location of pro-
cessed mask remaining the camera sensor parallel to the pro-
cessing surface. The current focus is analyzed and the set dis-
tance for the confocal sensor is corrected subsequently.

Table 1 Technical specifications of USPLR system.

unit value

Robot position accuracy mm 0.033
Robot line path accuracy mm 0.7
Zoom camera resolution pm/pixel 8
Confocal sensor resolution pm 0.25

reduces and positive offset represents the increase on
the distance between F-Theta lens and processing sur-
face

3. A camera with zoom adjustment function (DMK
39GX548-Z220, The Imaging Source) is mounted on
Axis6 for recording the laser mask (Fig. 2(c)). A high
resolution is extended by using a macro lens (Achro-
matic +10, SAGA). Robot moves camera to the position
of the processed mask. The current beam focus position
is analyzed, and the set distance for the confocal sensor
is updated.

Please note that step 1 is utilized to regulate the distance be-

tween F-Theta lens and processing surface not only prior to

the initiation of the process but also during the process peri-

odically. The technical specifications of the USPLR system

are shown in Table. 1.

3.2 Beam focus position determination

The mask applied for beam focus position monitoring in
the experiment is illustrated in Fig. 3. Maintaining the beam
propagating axis parallel to the surface normal, the robot
moves along the surface normal across the entire distance
offset range of £2 mm from the set distance with an offset
step of 200 um. One laser mark as well as two extra direction
marks on both sides are written by the laser after the robot
arrives on the corresponding offset, wherein the large central
mark denotes the defined set distance. Negative offsets are
indicative of a decrease in the distance between the F-Theta
lens and the processing surface, while positive offsets indi-
cate an increase in distance. Since visible marks beyond the
offset range result in a wrong calculation of the beam focus,
a low laser fluence slightly beyond the threshold is required
for the mask writing, with which only a part of marks is vis-
ible while ensuring the mark next to the direction mark in-
visible. The current beam focus is therefore determined as

negative === positive
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Fig. 3 Mask for beam focus monitoring and set distance ad-
justment. Marks are written by the laser and scanner. One
mark represents an offset step and is written after robot
moves one offset step along the processing surface normal.
The large central mark represents the defined set distance,
where the offset is 0. Two direction mark reveal the robot
offset direction.
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the corresponding offset represented by the center of the vis-
ible marks.
The center of the visible marks is calculated by

Neenter = (Np + N,)/2, (1

where the N, >0, VN, is the mark number in positive di-
rection and N,, < 0, VN, is the number of marks in the neg-
ative direction. If the Nggper 1s smaller than 0, the current
focus is above the processing surface and the set distance of
confocal sensor should be decreased. In contrast, the set dis-
tance should be increased for N.epser > 0. The value of
Nenter indicates the number of offset increments that
should be appended on the set distance. A correct focus po-
sition is observed by N_gnter = 0.
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Fig. 4 Image processing for beam focus determination. The
contour of visible marks is determined using Canny algo-
rithm. The laser mask is separated into negative and positive
side based on the large central mark and the direction marks.
The regions are selected by matching the contours with the
region masks. The visible marks on each side are counted,
excluding the central large mark and the direction mark.

A method for counting visible laser marks based on the
OpenCV image processing library is illustrated in Fig. 4.
The region of interest for each side is selected by matching
the contour of the whole mask with the negative and positive
region masks. The direction mark and large central mark are
used to determine the direction and to locate the mark posi-
tion. Additionally, a laser mark next to the large central mark
in the region mask is mandatory for distinguishing the large
mark from normal marks.

3.3 Mask classification

Beam defocusing cannot be completely avoided in the
process with substantial robot movements in 3D area. The
influence of the beam defocusing was studied by applying
an ablation process on fused silica. According to the applied
F-Theta lens f = 160 mm and the beam quality factor
M? = 1.2, the defined Rayleigh length is calculated to
2.582 mm. Maintaining the standard processing surface
(parallel to the ground), the robot moved with an offset step
of 200 um through the focus offset range of +2 mm. After
the robot arrived at the corresponding offset, a cavity was
ablated. As shown in Fig. 5(a), a negligible variation on the
ablation depth is observed within the focus offset range of
+600 um. Ablation performance in the positive offset direc-
tion is more consistent compared to the negative direction.
A significant decrease in ablation depth is observed beyond
a focus offset of £1500 pm, while a slight reduction occurs

Table 2 Classification of focus offsets.

class offset range/pm meaning

0 -300~+300 Optimal for processing

1 +301~+500 Positive offset acceptable

2 +501~+800 Positive offset should be
corrected

3 >801 High positive offset

-1 -301~-500 Negative offset acceptable

-2 -501~-800 Negative offset should be
corrected

3 <801 High negative offset

between 600 um and 800 pum offsets on both sides. In con-
trast, the surface roughness shows a high sensitivity to defo-
cusing. A notable increase in surface roughness is observed
for the offsets exceeding £400 pm in both directions.

To ensure robust process capability while maintaining a
stable process quality during complex 3D movements, the
mask is simplified and categorized into seven classes, as il-
lustrated in Fig. 5(b). The definitions and corresponding
meanings of these classes are provided in Table 2.

However, the influence of the utilized F-Theta lens
should also be considered. The definition of focus length
range is based on the calculated Rayleigh length, e.g. a range
of +1 mm is recommended for a 100 mm focus length. The
offset step is selected based on the focus length range as well
as the focus offset classification. The offset step should be
able to remain the class distribution shown in Fig. 5(b).

4. Results and discussion
4.1 Mask analysis with image processing-based
method
The laser marks with various line numbers and back-
ground were captured by the focus camera on the USPLR
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Fig. 5 Mask classification based on the ablation process. (a)
The influence of beam defocusing on fused silica ablation
using the USPLR system. (b) The mask is categorized as 7
classes, in which the number represents the level of offset
and the sign represents the offset direction.
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Fig. 6 Examples of laser mask applied for method testing. The var-
iations in the number of laser marks, mark positions and back-
ground were considered. The calculated line numbers are rounded
to the digit.

system. The proposed method was tested with 37 samples
and the calculation accuracy is 94.28% (A part of samples is
shown in Fig. 6.).

However, the proposed image processing-based method
is sensible to the changing of mark size and orientation and
presents a low tolerance on environmental deviation. Fur-
thermore, at least one mark on the side is mandatory for the
region detection and the subsequent calculation, which lim-
its flexibility.

4.2 Mask analysis with YOLO-based method

Machine learning models have been widely applied for
object detection and classification, which shows a high tol-
erance of the variation of environment. The YOLO object
detection model due to the capability of real time object de-
tection and classification shows the potential on efficient fo-
cus classification for the 3D processing using USPLR

Real-single

(a)

R TIIITIT
(v

Table 3 Training dataset structure.

Real-single Mixed Real-double

Real 212 212 424
Real nega- 120 120 120

tive
Artificial NA 122 NA
Artificial NA 120 NA
negative

Total 332 574 544

system. Please note that YOLOvV7 [29] is applied in the ex-
periment.

For a more general model, the number of total visible
marks varies from 6 to 12 for the model training, while the
large central mark remains included in the visible mark se-
quence. The marks are counted separately on each side,
starting from the large central mark and extending outward.
The number of the total visible marks is calculated as the
sum of the visible marks on both sides plus the large central
mark excluding the side mark. Please note that class varia-
bles increase with the number of total visible masks. A total
of 106 sample variables were used, with each sample varia-
ble representing a unique combination of the visible mark
number and its corresponding classification label.

The dataset structure influences training accuracy. The
baseline dataset (Real-single) consists of one item per sam-
ple variable, and a 180° rotated version of selected items, the
40 negative samples containing only the background without

Mixed Real-double
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Fig. 7 The structure of training datasets and their corresponding test result. The training data structure for (a) One item per sample
variable with pure real data. (b) Mixed of one item from real data and one artificial data. (c) Two items per sample variable with pure
real data is shown. (Numbers represent the item with various operation. 1: original item, 2: artificial item; 3: original item rotated of
180°, 4: artificial item rotated of 180°, 5: second original item, 6: second item rotated of 180°.) Confusion matrix of the model trained
by the (d) Real-single, (¢) Mixed, and (f) Real-double dataset. The number in the confusion matrix represents the applied sample number.
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any visible marks (Fig. 7(a)). Given the typically high cost
of data generation, additional artificial samples were incor-
porated to expand the dataset size (Mixed). This database
consists of one item per sample variable, one artificial item,
and a 180° version for both original and artificial items (Fig.
7(b)). In addition, a dataset composed of pure real data, with
two items per sample variables and a 180° rotated version
for each item (Real-double), was also used for model train-
ing (Fig. 7(c)). The number of applied items in the three da-
tasets is shown in Table 3. For efficient model training with
less training samples, a pretrained YOLO7-tiny model was
initialized for the training.

An item was randomly selected from each sample varia-
ble for the model test. The test dataset consists of the original
items, the selected items with a rotation between £30° while
changing the position randomly, as well as a 180° rotated
version. 212 items were used in the experiment.

The test result of the model trained by three datasets is
illustrated in Fig. 7(d-f). The Mixed dataset improves the
model prediction accuracy with the average prediction accu-
racy of 93.9%, which is 6.9% higher than the Real-single
dataset. Noting that, the prediction accuracy of class 0, 2, 3
and -2 increases using the Mixed dataset. However, wrong
prediction was found in class 0 using both Real-single and
Mixed datasets, which is the most essential class for the laser
processing. In contrast, all the test items were correctly clas-
sified using Real-double dataset.

Using the same YOLO model, the model accuracy is im-
proved with increasing training items. Artificial data sup-
presses the cost of data generation and improves training ac-
curacy. However, artificial data could not replace the real
data completely. Remaining the same scale of training da-
taset size, the model trained by the dataset composed of pure
real data shows higher accuracy compared to the artificial
data mixed dataset.

4.3 3D ablation processing using USPLR system
Cavities are ablated on fused silica in various surface ori-

entations. Both image processing-based and YOLO-based
methods are implemented in the USPLR system. The beam
focus monitoring and ablation process with various surface
orientations is illustrated in Fig. 8. The processing surfaces
are rotated along the y axis with a 15° increment from -30°
to 15°. (Please note, the rotation exceeding 15° can result in
collision and is therefore out of discussion.) The following
steps are performed for each surface rotation:

1. The robot moves to the processing area and adjusts the
distance using the confocal sensor;

2. The scanner writes mask with offsetting focus with a
200 pm step ranging from —2 mm to 2 mm along the
normal of processing surface;

3. Robot moves camera to the processed position and cap-
tures laser mask. The mask is than analyzed by the im-
age processing-based method and the trained YOLO-
based method;

4. A new specimen replaces the processed specimen, fol-
lowing the adjustment of the system to the set distance
corrected in the step 3;

5. Cavities are ablated with offsetting adjusted beam focus
in the range of +2 mm along the processing surface nor-
mal in a 200 pm offset step. One cavity is ablated after
robot moves an offset step along the processing surface

normal and a 3 mm offset along the y direction. The
beam focus is monitored by the confocal sensor before
each cavity ablation process.

The test is repeated three times.

The ablation on fused silica at four rotation positions ver-
sus focus offset is shown in Fig. 9(a), revealing a constant
ablation depth in the focus offset range of £1000 um for all
orientations. The average ablation depth is 54.6 um for dy =
0° and 54.8 um for dy = —15° in the constant ablation range,
while a reduction of 2.1 pm and 2.3 um of ablation depth is
observed at dy = 15° and at dy = —30° as compared to the
ablation depth at dy = 0°. The maximum standard deviation
of the ablation depth is 1.69 um in the offset range of
+1000 um, which is observed at dy=—30°. Processing stabil-
ity depends on the system orientation.

Apparently, a large orientation leads to a reduction on the
processing stability. The torque increases as Axis6 moves
away from the initial position, where a minimum torque be-
tween Axis4 and Axis5 presents (at dy = 0°), which in turn
compromises system stability and reduces the ablation qual-
ity subsequently. Additionally, at a focus offset of 1500 um,
a smaller reduction in ablation depth is found at negative ori-
entations, whereas a significant reduce occurred at dy = 0°
and 15°. One assumption for this behavior is the inhomoge-
neous fluence distribution led by the extremely defocused
laser beam (elliptical beam spot form) in conjunction with
the axis orientation variation. Furthermore, negative defo-
cusing resulted in a more significant decrease in ablation
depth as compared to the positive direction. No ablation is
detected at —2000 pm offset in the negative direction, while

—y o

dy = -30°

S

dy =-15°

dy =0°
(2)

Image processing YOLO

Fig. 8 Illustration of ablation on ﬁlsed silica with variable sur-
face orientations using USPLR system. (a) Robot system and
processing surface rotate along y direction from -30° to 15° with
remaining the beam propagating axis behind F-Theta lens paral-
lel to the surface normal. (b) Both methods determine the beam
focus correctly at four rotation positions.
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an ablation depth of 51.3 pm is achieved at 2000 pm offset
with dy=-30°.

Also, the surface roughness R, exhibits a high sensitivity
on beam defocusing (Fig. 9(b)). A low roughness is observed
within the focus offset range of £400 um. The maximum av-
erage roughness for four rotations is about 500 nm with a
standard deviation of 43.7 nm within this offset range, which
is shown at dy = 0°. Cavities ablated at dy=0° and 15° exhibit
a comparable surface roughness trend. Interestingly, nega-
tive orientations are found to suppress the surface roughness.
A low roughness is observed at negative orientations within
the range of 600-1400 um. This behavior suggests that defo-
cused laser beam with elliptical spot form contributes to sur-
face roughness, and the variations in system orientation can
mitigate this effect, offering a possibility to enhance surface
quality through optimized surface orientation.
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Fig. 9 Average ablation depth and surface roughness R. with
system orientation variation from —30° to 15°. Three cavities
were ablated at each offset step. The value in the range of
+400 pm with the standard deviation.

5. Conclusion

A focus monitoring approach for 3D laser processing us-
ing an ultrashort pulsed laser robot system is developed. The
system moves along the processing surface, remaining the
beam propagating axis behind F-Theta lens parallel to the
normal of the processing surface. The beam focus monitor-
ing and adjustment during the process is realized by adjust-
ing the distance between the system and processing surface
using a confocal sensor. Methods based on image processing
and deep learning YOLO model for laser mark classification
are developed, which are applied for focus monitoring and
distance correction between system and processing surface.
For model training, three training dataset structures are com-
pared, wherein the model trained by the dataset consisting of
two items per sample variable plus the 180° rotated version
shows the highest accuracy. Both, image-processing based
and YOLO-based methods determine the beam focus in the

ablation on fused silica with varying the surface orientation
correctly.

Varying surface orientation and beam focus position, cav-
ities are ablated using the USPLR system. The ablation
depth is found to be constant while offsetting the beam focus
in the range of £1000 pm. The resulting surface roughness
exhibits a high sensitivity on beam defocusing and surface
orientation. A constant surface quality is observed in the fo-
cus range of £400 um within the surface orientation range
of —30° to 15°. An asymmetric reduction in surface rough-
ness is shown with varying surface orientation, where a
lower surface roughness is observed at negative surface ori-
entations in the positive focus offsets.
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