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Polishing metallic materials with laser radiation (LP) is based on the melting of a thin surface layer. 
In the molten phase, surface roughness is smoothed because of the interfacial tension and the material 
solidifies with a smoothed surface. It also creates surface structures, which introduce roughness in a 
specific wavelength range. In most cases, multiple surface structures occur simultaneously. Altogether, 
they present a significant obstacle in achieving polishing results necessary for use in industry (Metric 
Ra often smaller 100 nm). However, once successfully detected, the role of surface structures towards 
roughness may be systematically reduced [1,2]. During process parameter development, surface struc-
tures must be analyzed manually by highly skilled process engineers using various, expensive analysis 
techniques to optimize process parameters (E.g., white-light interferometry and scanning electron mi-
croscope). To automate this process, this work evaluates state-of-the-art image processing methods to 
detect surface structures solely based on white-light interferometry. Therefore, process experts have 
identified up to eight different surface structures in over 2,500 white-light interferometry images to 
build a meaningful and representative dataset for surface structure classification on various materials. 
We benchmarked state-of-the-art machine learning models and show that both, ResNet [3] and vision 
transformer (ViT) [4] models are suitable techniques for classifying surface structures, achieving up 
to 82% accuracy on our dataset. Furthermore, we explore the self-supervised learning approach 
data2vec [5] to make unlabeled data usable by pretraining in a self-supervised fashion and show that 
features learnt are already descriptive enough to distinguish surface characteristics of different types 
without requiring any annotation. Building on state-of-art techniques, we propose a novel masking 
strategy to further improve the quality of the learnt features regarding surface properties, which may 
be beneficial in a much broader context than just metallic surfaces. With this new technique, we build 
a bridge for vast, unlabeled data which is often collected in large quantities from industrial machines 
but cannot be used in supervised machine learning without prior manual labelling. 

Keywords: laser polishing, vision transformer, self-supervised learning, machine learning, surface 
structures, data2vec, ResNet

1. Introduction 
Laser polishing (LP) is a finishing process using a gal-

vanometric scanner to guide laser radiation melting the sur-
face, making it highly suitable for polishing complex free-
form surfaces. Its highly non-linear thermo-physical rela-
tionship between process and material makes process ex-
perts spend lots of time to find process parameters which 
meet inquired surface quality. This is in direct contrast to the 
rising industry demand towards swift time-to-market and 
low development cost for the goal of product individualiza-
tion of small lot sizes down to one. 

Two process variants for polishing of metals can be dis-
tinguished: laser macro polishing with cw laser radiation [6] 
and laser micro polishing with pulsed laser radiation [7]. 
Both process variants use, in most cases, laser radiation of 
wavelength between 1,030 nm and 1,064 nm. While for 
macro polishing, a continuous melt pool with depth between 
30 µm to 100 µm is created, the mechanism of micro polish-
ing works by creating discrete melt pools, with melt pool 
resolidifying before the next pulse. 

 

The goal of laser polishing is to reduce surface rough-
ness as much as possible. In an ideal world, the process 
would smoothen all initial roughness leaving a perfectly flat 
surface. However, the combination of suboptimal process 
parameters, laser form and inhomogeneous material lead to 
the additional formation of roughness artifacts, so-called 
surface structures. In this context, we distinguish between 
remains of the surface structures from the previous pro-
cessing step(s) and surface structures introduced by the laser 
polishing process. 

Therefore, to smooth the surface for a given material and 
initial surface as much as possible, structures introduced by 
the laser polishing process also need to be considered. The 
mechanisms of structure formation and their relation to-
wards process parameters are well researched [1,2], from 
which we have taken the next logical step towards more au-
tomated process parameter optimization to help reduce staff 
time and make the optimization process more efficient: In 
this paper, we conduct a feasibility study of automated sur-
face structures classification on the domain of white-light in-
terferometry measurements using computer vision. 
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Showcasing that surface structures can be classified only us-
ing white-light interferometry could be more easily auto-
mated compared to other methods such as scanning electron 
microscopy or cross-section analysis and thus would result 
in a huge reduction in time and cost in process parameter 
development. 

In this context, the de-facto standard, supervised learn-
ing, imposed a major hindrance as collecting data on struc-
ture formation after laser polishing has not been a major fo-
cus of research. To overcome this challenge, in this paper, 
we compared two approaches with approach A using super-
vised-learning and approach B, self-supervised-learning 
(SSL): For approach A, we annotated over 2,500 white-light 
interferometry images with a total of eight depicted surface 
structures and trained a ResNet on this data using supervised 
learning. For approach B, we first pre-trained Vision Trans-
former (ViT) models on raw WLI data without annotations 
and later finetune it in a supervised fashion on the same data 
as used for approach A. 

We cover literature on structure formation during laser 
macro polishing, the data set creation using white-light in-
terferometry images (WLI), preprocessing of the data, and 
small adjustments to existing SSL algorithms to make them 
more suitable for processing our domain-specific data. The 
comparison on supervised-learning vs. SSL is done using a 
state-of-art supervised learning model for image classifica-
tion, ResNet models, against self-supervised learning mod-
els, pre-trained vision transformer (ViT) models. 

2. Related Work 
2.1 Surface structures in laser polishing 

To smooth a surface for a given material and initial sur-
face as much as possible, the surface roughness introduced 
by the polishing process itself needs to be as low as possible. 
[2] gives detailed background information on common sur-
face structures induced by laser polishing and categorizes 
them by laser macro and micro polishing. In following a 
brief overview of the information is given. Surface struc-
tures are formatted in this fashion for better readability. On-
going, in chapter 3 we restrict the superset of surface struc-
tures mentioned here to structures identifiable from white-
light interferometry images and structures that lead to a high 
relative increase in induced roughness. 

Initial roughness structures: Ineffective laser polishing 
may not fully remove initial surface artifacts and thus can 
lead to remains of the surface structures from the previous 
processing steps, namely remains of initial roughness. 

Laser macro polishing: Surface structures which arise 
during laser macro polishing appear due to the dynamics of 
melt and solidification front, namely ripples and undercuts 
and as a production of plastic deformation and changes in 
the microstructure, namely bulges, step structures and mar-
tensite needles. 

Laser micro polishing: Surface structures which arise 
during laser micro polishing appear due to too low or too 
high fluence, namely undercuts, micro waviness and border 
bulging, due to sulfidic and oxidic inclusions released during 
melting, namely holes, carbidic inclusions released during 
melting, namely micro structures and due to plastic defor-
mation, namely step structures. 

 

2.2 Convolutional Neural Networks 
The use of machine learning to analyze image data, in 

particular deep learning, has established itself as the back-
bone of process monitoring since the development of convo-
lutional neural networks (CNN) [8]. Prominent models from 
this family, like the ResNet [3] model, are composed of mul-
tiple blocks connected through residual links, each contain-
ing a series of stacked convolution and pooling layers. With 
this combination of layers, CNNs create spatial hierarchies 
by progressively summarizing information from lower-level 
feature maps. This allows higher-level layers to capture 
larger contextual information and broader patterns, enabling 
the network to understand relationships between different 
parts of an image visualization [9]. CNNs are also suitable 
for transfer learning by pre-training them on large dataset 
like ImageNet [10] and afterwards retraining the last layers 
on the actual problem [11]. 

2.3 Vision Transformer 
Originating from the field of Natural Language Pro-

cessing (NLP), Transformer models [12] have created a new 
way of processing data sequences. Using self-attention 
mechanisms, these models can understand global relation-
ships in the data better than CNN models. This model archi-
tecture has gained widespread public attention through its 
use in large language models (LLM), such as GPT-3 [13] 
(ChatGPT). Vision Transformer [4] (ViT) models transfer 
the self-attention mechanism to the field of computer vision. 
In general, ViTs are well suited for transfer learning. When 
pretrained on a large dataset, ViTs outperform state-of-the-
art CNN architectures in classification tasks [14] with fewer 
computational expenses [4,15].  

Compared to CNNs, the ViT shows significantly less im-
age-specific inductive bias. While CNNs ingrain locality, 
two-dimensional neighborhood structure, and translation in-
variance throughout every layer, ViT selectively applies lo-
cal and translation-equivariant properties only in the MLP 
layers. The multi headed self-attention (MH-SA) blocks in-
stead only operate in a global context. [4] 

Another advantage of vision transformers over CNNs is 
the improved explainability provided by the ability to visu-
alize the various attention heads in the self-attention mecha-
nism [15]. There are also approaches for similar analysis for 
CNNs, but they require comparatively complex methods to 
extract such information from their weights [9]. 

2.4 Self-Supervised Learning 
Self-supervised learning (SSL) is a type of machine 

learning that enables a model to learn how to extract signif-
icant features or representations from unlabeled data without 
relying on explicit human-labeled annotations. This tech-
nique trains the model to predict certain characteristics or 
relationships within the data, utilizing the inherent patterns 
or structure present in the unlabeled samples [16]. These 
learned representations can then be applied to downstream 
tasks like classification, clustering, or regression, often 
achieving comparable or superior performance to models 
trained with supervised learning using labeled data [15]. 
There are two main approaches for SSL in the vision do-
main: Contrastive and Non-Contrastive Self-Supervised 
Learning. Contrastive learning aims to learn representations 
by maximizing the agreement between similar pairs of data 
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points while minimizing the agreement between dissimilar 
pairs. The core idea is to create a discrimination task where 
the network learns to distinguish between positive pairs 
(similar) and negative pairs (dissimilar) [17,18]. The limita-
tion of contrastive learning in computer vision is the high 
dimensionality of the images because there are countless 
ways in which one image can differ from another. An opti-
mal set of contrastive images that cover all the ways they can 
differ from a given image is nearly impossible to create or 
find [16]. 

We therefore chose to investigate data2vec [5], a non-
contrastive SSL algorithm, and its effect pre-training ViT 
models on unlabeled data of laser polished surfaces. 
Data2vec does not rely on calculating dissimilarities for neg-
ative image pairs. Instead, it uses two identical encoder net-
works, a student, and a teacher. The teacher network inputs 
the original image while the student takes the masked ver-
sion. The training objective for the student is to predict the 
average latent representation of the original image in the 
teacher network based on the masked image. To accomplish 
this objective, the student network must infer the missing in-
formation based on the unmasked parts of the image. By do-
ing so, the student learns to understand its underlying repre-
sentation. 

In detail, the student and the teacher network are both ViT 
encoder models, but only the student’s weights are updated 
using backpropagation during training. The weights of the 
teacher 𝜃𝜃𝑡𝑡 are instead given by an exponentially moving av-
erage (EMA) of the student’s weights 

𝜃𝜃𝑠𝑠: 𝜃𝜃𝑡𝑡 ← 𝜆𝜆𝜃𝜃𝑡𝑡 + (1− 𝜆𝜆)𝜃𝜃𝑠𝑠, 
improving the stability of the training and preventing a 
model collapse. 𝜆𝜆  linearly increases from 𝜆𝜆0  to the target 
value 𝜆𝜆𝑒𝑒 over the first 𝜆𝜆𝑛𝑛 updates, after which the value is 
kept constant. The feature and positional embedding weights 
are excluded from the EMA update rule. These are learned 
normally within the student network and then shared with 
the teacher. The training criterion for the student is a smooth 
L1 loss (equation 2), but for β = 0, it will change to a mean 
squared error. Also, only masked parts of the image fed into 
the student network participate in the loss calculation. The 
patch encoding for unmasked patches does not influence the 
loss. 

. 

3. Application domain, dataset, and dataset prepara-
tion for the computer vision task 

In this chapter we derive the selection of structures for 
the image classification task. To guide our decision, a tabu-
lated analysis is given, which categorizes surface structures 
introduced from chapter 2 into categories: typical measure-
ment methodology, detectability through White Light Inter-
ferometry (WLI) and impact on induced roughness. From 
this information, we derive which structures we want to clas-
sify using computer vision. Further, we introduce a dataset 
which was specifically annotated for this task. At the end we 
give insights into our image preparation techniques for im-
age classification. 

 
 

3.1 Characterization of surface structures in white-
light interferometry images 

Both laser macro and micro polishing induce surface 
structures making low target roughness hard to achieve. As 
each surface structure has an individual impact on target 
roughness, we chose a subset of surface structures, which 
have either at least a medium impact on target roughness or 
are simple to detect by human eye or both. An exception was 
made for undercuts and bulges, as when they appear, their 
impact on target roughness is quite high and reduction is 
quite simple by altering process parameters (see [1], chapter 
5 for more information on alteration of process parameters). 
The result of our choice can be depicted from Table 1. Cho-
sen surface structures for the dataset are formatted bold. The 
choice subsumes our observations. Column “Lateral size 
[µm]” shows the typical range and may differ for unique sur-
faces or materials. One can observe that the impact on target 
roughness is highly dependent on the lateral size of the sur-
face structure. This follows a general trend that with larger 
structures, their amplitude is also higher leading to higher 
impact on target roughness. For the final subset, we added 
two more surface structures: laser macro polishing (CW) and 
laser micro polishing (Pulsed) depending on whether a 
process was performed on the surface or not. Also these 
classes do not strictly conform to the notation of “surface 
structure” as we use it, we think, its an important class for 

the machine learning models to learn as recognizing these 
apparent patterns can aid in transferring the AI model to 
other systems. This allows for the determination of the 
model's uncertainty based on the recognition rate of these 
surface characteristics, without the need for manual 
annotation of a new data set. 

Table 1 Surface structure and their impact on rough-
ness. 

Su r face   
S t ructu re 

La t e ra l  s i ze  
[µm]  

Detect abl e  
w i th  WLI 
[Yes ,  No] 

Impac t  
[ - ]  

Remains  in i t .  100-2000 Yes H igh 
Ripples  100-640 Yes H igh 

Undercuts  20-160 No*  H igh 
Bulges 40-320 No*  H igh 

Step s truc .  50-640 Yes H igh 
Martens i te  

 
5-15 Yes Low 

Micro  wav i . 50 -100 No Med ium 
Border  bu lg . 10 -50 No Med ium 

Holes 10-40 Yes Med ium 
Micro  s t ruc . 1 -2 No Low 
 
*: Undercuts and bulges cannot be distinguished sepa-
rately, as the overlapping of the tracks creates a new 
form of structure that does not resemble either struc-
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An overview of the typical appearance of each chosen 
surface structure within a WLI image is shown in Figure 1. 

3.2 Data acquisition and preprocessing 
The surface height maps (XYZ matrices) are acquired 

with the NexView™ NX2 white light interferometer by 
Zygo Corporation. The technology enables contactless sur-
face topography measurement at different optical resolutions. 
For machine learning, height maps were interpreted like an 
image tensor with a single channel, like a grayscale image. 
A comprehensive data set, created as part of this work, con-
sists of cross-project measurements from several years of re-
search. Each image goes through a preprocessing pipeline to 
remove artifacts from the acquisition.  

The first preprocessing step is to remove a plane for 
compensation of any inclination of the sample relative to the 
measuring device. In the next step we removed outliers 
larger than five standard deviations and lastly replaced miss-
ing values . This is achieved by computing a Gaussian fil-
tered version of each measurement and sampling from this 
filtered version to superimpose the missing values in the 
original measurement. Figure 2 shows the effect of the suc-
cessively applied preprocessing steps.  

By merging and pre-processing various WLI measure-
ments from previous projects, it was possible to create a data 

set comprising 8,362 measurements with a resolution be-
tween 0.0005 mm/pixel and 0.0015 mm/pixel. The resolu-
tion range was chosen such that all relevant surface struc-
tures are clearly recognizable by human eye. 2,536 random 
images from the LPM dataset were further manually anno-
tated by at least two experts. An image contains a valid an-
notation if at least one expert found a respective class. A dis-
tribution of such labelling can be seen in Figure 3. Since 
multiple structures can appear superimposed on the same 
surface, the image classification problem becomes a multi-
classification problem. This dataset will be named LPM (La-
ser Polished Metal) dataset for the remainder of this paper. 
 

 

Fig. 2 Effect of the preprocessing pipeline. (1) Raw WLI image, (2) removal of intrinsic plane, (3) removal of spikes, (4), filling miss-
ing missing values with gaussian fit (e.g., from acquisition or spike removal).  

Fig. 3 Class distribution of the LPM dataset. 

Fig. 1 Images of surface structures induced by laser radiation of continuous wave (CW) mode and pulsed mode colorized in false 
color scheme (Red: high, blue: low). Pixels represent relative image height in range of [-5, 5] µm. Images are shown in indi-

vidual resolution to bring forth structures. 
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Regarding the class distribution, step structures, ripples  
and undercuts/bulges are underrepresented in relation to 

other surface structures. This imbalance can have a negative 
impact on the classification performance for the less 
represented classes, but the problem is partly compensated 
by a weighted loss function during finetuning [19]. The 
weighted loss function assigns higher weights to the 
underrepresented classes (like step structures, ripples, and 
undercuts/bulges), thereby penalizing misclassifications of 
these classes more heavily and encouraging the model to 
learn them more effectively. 

4. Methodology 
The aim of this work is to benchmark the capabilities of 

ViT models for surface structure recognition against ResNet 
models, which are considered state of the art in the industrial 
context [8]. For this purpose, different model configurations 
of both architectures are compared. Both models are not only 
trained classically supervised from scratch, but also pre-
trained model weights (ImageNet1k [10]) are used, publicly 
available [20]. For the ViT models, the SSL algorithm 
data2vec is additionally applied in original and a modified 
form, which is explained later in detail. 

4.1 Models 
The PyTorch [21] implementation of the ResNet model 

is used as a benchmark model in three different configura-
tions, which are listed in Table 2. These models require a 
three channel 224x224 pixel input. We decided not to mod-
ify the first layer to take one channeled input, since we 
planned to use a model pretrained on ImageNet. Instead, the 
single channeled LPM data was copied to match the three-
channel input requirements. 

All ViT models used in this work are based on the im-
plementation [22] used by Meta AI for their data2vec paper 
[5]. Compared to the original ViT paper [4] Meta AI replaces 
the learnable positional encoding by a learnable relative po-
sitional encoding and additionally uses the mean over all 
patch embeddings as input for the fully connected layer in-
stead of the embedding of the class token. However we de-
cided to use the positional encoding from the original paper, 
to be able to replace the attention mechanism with FlashAt-
tention2 [23]. This reduced the step time from 240µs to 64µs 
and the memory usage from 10.9 GB to 2GB, without a sig-
nificant difference in the training results [24]. The naming 
of these models follows the scheme from the ViT paper [4]: 
The letter following ViT, B(ase) or S(mall), represents the 
number of attention heads. The number after the slash (’/’) 
indicates the patch size. Some model configurations in this 
work use different sizes for hidden embedding compared to 
the literature. If this is the case, the size of the hidden 

embedding is given after a hyphen (’-’). Table 3 describes all 
ViT model configurations used in this paper, whereby each 
of these models consists of 12 Attention Blocks. For finetun-
ing on the LPM data set, a head consisting of a single fully 
connected layer is added to each of these models. 

4.2 Self-supervised Pre-training 
To leverage the vast pool of unlabeled data from the 

LPM dataset, the data2vec (D2V) approach is employed. 
This method allows the ViT model to extract valuable infor-
mation and representations from unlabeled data without the 
need for additional labelling efforts. During the self-super-
vised pre-training phase, the student network is presented 
with a 50% randomly masked image, and its objective is to 
predict the averaged embedding of the last eight layers from 
the teacher model. To update the teacher model’s weights, an 
exponential moving average (EMA) is utilized with a decay 
rate λ of 0.999, gradually increasing during training until 
reaching 0.9999. This adaptive decay rate helps stabilize the 
training process and allows the teacher model to provide 
more reliable guidance to the student. The initial learning 
rate for the training process is set to 0.0005 [5]. 

D2V hides information in the spatial domain. For da-
tasets like ImageNet, where the task is to classify an image 
by the represented object or animal, masking in the spatial 
domain takes out a significant proportion of the underlying 
representation. If, for example, a dog’s head is masked, the 
model must learn that a dog’s head follows a dog’s body. 
Thus, the model learns to recognize a dog’s body without 
knowing what a dog is. For WLI data, masking parts of the 
data may not be sufficient as many structures occur periodi-
cally. Removing parts of these images does not necessarily 
remove substantial information. We therefore developed a 
novel extension for the D2V algorithm: Frequency range 
masking. 
 

 

Table 3 ViT model configurations. 

 
Model  

#  
Heads 

#  Emb .  
d im. 

#  Pa t ch  
S i ze 

#  
Params 

ViT-S/8-144 6  144 8  3 .4M 
ViT-S/8 

 

6  384 8  22M 

ViT-S/16 6  

 

 

384 16 21 .6M 
ViT-B/16 12 768 16 86 .1M 

 
 

Table 2 ResNet model configurations. 

Model  #  Params 

ResNet -18 11 .7M 

ResNet -34 21 .8M 

ResNet -50 25 .6M 

 

Fig. 4 Schematic representation of data2vec model inputs 
when combining spatial and frequency masking. 
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To remove various frequency ranges, we used band-stop 
filters based on the ISO11562 [25] standard. Using FFT, 
these were then applied to the WLI measurements to remove 
information in different frequency ranges. Interval ranges 
were chosen based on the spatial size of the individual sur-
face structures and are therefore suitable for the targeted ex-
traction of relevant information from the measurements. 
Ranges can be found in [1,6]. Figure 4 shows an original 
image, that is fed into the teacher versus a both spatially and 
frequency range masked image, which is fed to the student. 
The task is the student is to predict the same inference as the 
teacher. 

4.3 Experiments 
The experiments that were carried out as part of this 

work can be divided into two categories: Model architecture 
and data2vec variations. On the one hand, different model 
architectures and training algorithms were tested to achieve 
the best possible recognition of surface structures and on the 
other hand, different variations of the data2vec SSL algo-
rithm were analyzed to evaluate the encodings learned from 
unlabeled data. 

The performance of the individual models on the LPM 
validation dataset was evaluated using various metrics. Ac-
curacy was used for easy comparison of the different models 
during the training process. In the context of structure recog-
nition, a data point is considered correctly classified if each 
of the occurring structures has been correctly identified (re-
call: multi-label problem). If, for example, only 3 out of 4 
existing structures are recognized or an additional structure 
is recognized, the data point is incorrectly classified. A sin-
gle structure is considered recognized if the predicted logits 
exceed the fixed threshold of 0.5. This metric only allows a 
first, rough assessment of the model performance, as factors 
such as class imbalances are not considered. For a detailed 
analysis of the model performance for the individual struc-
ture classes, the Receiver Operating Characteristic (ROC) 
[26] curve and the Precision-Recall tradeoff is used. 

To quantitatively analyze the feature encodings learned 
through the SSL, the LPM validation dataset is used with the 
same metrics as for evaluating the finetuned models. The 
only difference is that during finetuning only the classifica-
tion head is trained, which consists of only one fully con-
nected layer. This evaluates how well the features learned on 
unlabeled data are suitable for classifying surface structures. 

A randomly initialized ViT encoder model serves as a bench-
mark.  

An additional qualitative analysis is performed using a t-
SNE [27] visualization of the learned features. This shows 
the similarities between different structures in the learned 
encoding and whether the encoding is suitable for perform-
ing a class separation. 

The ResNet model was trained in each configuration 
from Table 1 for 500 epochs on the LPM data. Each model 
configuration was trained once from scratch and once with 
ImageNet1k weights. The ViT models were also trained for 
500 epochs from scratch. In addition, each ViT variation was 
pretrained once with data2vec and once with data2vec + fre-
quency masking for 3,000 epochs. After pre-training, the 
model head was tuned for 100 epochs each and then the 
whole model was tuned for another 150 epochs. 

The batch size for the finetuning and pre-training of all 
models was 128. The learning rate for the pre-training of the 
ViT models was 0.0005 with a linear warmup over 120 
epochs and a cosine annealing decay over a single period. 
The optimizer for pre-training and finetuning the ViT mod-
els was an Adam optimizer [28] with ϵ = 1𝑒𝑒−8 [5]. For the 
ResNet finetuning a SGD optimizer with an momentum of 
0.9 was used [3]. The loss function for finetuning the ViT 
and ResNet models is a weighted binary cross entropy loss.  

The input size chosen was 224x224 to enable a fair com-
parison between ResNet and ViT models and to simplify 
training. In contrast to the ResNet models, ViT models can 
handle variable input sizes. Depending on the size of the 
WLI measurements, five to ten random 224x224 patches 
were sampled. 

5. Results and Discussion 
5.1 Finetuning ResNet 

The first set of experiments focuses on the finetuning of 
pretrained and randomly initialized ResNet models, as well 
as randomly initialized ViT models. We opted for this com-
parison because the implementation of such models involves 
comparatively little effort due to libraries such as PyTorch. 

Fig. 5 Development of validation accuracy during the training 
of the various ResNet models. 

Table 4 Finetuning differently pretrained ViT models. 

Model  Pre t ra in -
ing 

Val idat ion  Acc . 

V iT-S/8-144 d2v 

 

 

0 .74 
ViT-S/8 -144  d2v  +  freq  0 .781  

V iT-S/8 

 

d2v 

 

0 .754 
ViT-S/8 

 

d2v  + f req 0 .780 
ViT-S/16 d2v 

 

0 .741 
ViT-S/16  d2v  + f req  0 .771  
ViT-B/16 d2v 

 

0 .768 
ViT-B/16 d2v  + f req 0 .779 
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Table 4 summarizes the validation accuracies of the different 
model configurations.  

The finetuning of the ResNet models showed that the 
models trained on ImageNet achieved significantly better 
accuracy than the models trained from scratch. There are 
only small deviations in accuracy between the individual 
model sizes, both for the pretrained and scratch-trained mod-
els. Figure 5 also shows that the models that were pretrained 
on ImageNet achieved significantly better accuracy values 
from the start than the models without pre-training. Finetun-
ing ViT models from scratch also showed that the different 
model configurations perform similarly. In general, they 
achieved a lower accuracy of approx. 0.73 compared to the 
0.78 of the ResNet models from scratch and the 0.81 of the 
pretrained ResNet models.  

5.2 Influence of pre-training on ViT 
The next set of experiments focused on the self-super-

vised pre-training of ViT models and the impact of different 
approaches on the learned encodings, as well as the down-
stream performance on the LPM data. Table 4 shows how 
differently pretrained ViT model perform on the validation 
dataset after finetuning. In general, the additional removal of 
information by masking certain frequency intervals has a 
significant effect in that all models that have been pretrained 
by additional frequency masking show better results in fine-
tuning than models that have been trained with the classical 
data2vec approach. In addition, all pre trained ViT models 
show improved performance compared to from scratch 
trained models. 

This trend is also evident in the experiments to evaluate 
the self-supervised learned features. Figure 6 shows the de-
velopment of the validation accuracy during the fine-tuning, 
but only the model head was trained this time. The individ-
ual curves represent the averaged validation accuracy across 
all ViT configurations from Table 5 for each pre-training  
method used. 
The plots show that the pre-training of ViT models leads to 
them learning encodings that contain relevant features to 
recognize surface structures on polished surfaces without the 
need for an annotated data set. In addition, the plot indicates 
that the features within the learned encoding receive even 

more structure-relevant information due to the additional 
frequency masking.  

The qualitative analysis of the learned encodings was 
generated via a t-SNE visualization. Figure 7 shows how 
similar or dissimilar surface measurements of the different 
categories are according to the encodings of different pre-
trained ViT-S/8-144 models. The goal of this visualization is 
to see if the models were able to learn a semantic understand-
ing of surface texture through self-supervised pretraining. If 
this is the case, the model encodes surfaces with similar tex-
tures with similar features, and natural clusters then form 
within the t-SNE visualization. If the model encodes the im-
ages independently of their surface texture, the individual 
classes will mix in the visualization. A clear distinction be-
tween the individual classes shows that the model has 

Table 5 Finetuning ViT models from scratch in compari-
son with ResNet models. 

Model  Pre t ra in -
ing 

Val idat ion  Acc . 

V iT-S/8-144 -  0 .725 
ViT-S/8 

 

-  0 .727 
ViT-S/16 -  

 

 

0 .739 
ViT-B/16 -  0 .746 
ResNet -18 -  0 .792 
ResNet-18 ImageNet 0 .818 
ResNet -34 -  0 .784 
ResNet -34 ImageNet  0 .817 
ResNet -50 -  0 .774 
ResNet -50 ImageNet  0 .81 

   

 

Fig. 6 Development of validation accuracy during the finetun-
ing of only the model head for different pretraining 

methods, averaged over all ViT configurations. 

Fig. 7 t-SNE visualization of ViT-S/8-144 encodings after no 
pretraining(top), data2vec(left), and data2vec + freq 

(right). 
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learned a relevant representation of the data through pre-
training However, the data set described in Section 3 with its 
eight different structures is unsuitable for this method, since 
the structures often overlap, making it impossible to visual-
ize the clusters easily. Therefore, surfaces were selected in 
which only one structure type predominates. This includes 
various non-laser polished surfaces: grinded, EDM, milled 
and laser polished surfaces which have either step or mar-
tensite structures. 

It can be seen that the encodings from the untrained 
model is not suitable for distinguishing the surfaces from 
each other. After pre-training with data2vec, it can be seen 
that the various pre-treated surfaces can be distinguished 
from each other and from the laser-polished surfaces. 
However, the measurements with step and martensite 
structures are mixed. This changes with the additional 
masking of frequencies during pre-training. Especially data 
points with step and martensite structures can be clearly 
distinguished from each other, which was not the case with 
the data2vec encoding. Thus, pre-training with masked 
frequencies has eventually learned an encoding whichs 
features allow a better distinction between step and 
martensite structures that were not experienced during pre-
training with data2vec and the spatial masks. 

Finally, the best-performing ResNet model (ResNet-18) 
is compared with the best-performing ViT model (ViT-S/8-
144 pretrained using data2vec + frequency masking). The 
ROC curve and the precision-recall tradeoff of the different 
surface structure classes are compared. The ROC curves of 
both models shown in Figure 6 are almost identical. The 

AUC is the same for most classes. Exceptions are Ripples 
where the ViT model achieves a 0.04 higher AUC and Holes 
where the ResNet model achieves a 0.01 higher AUC.  

The ResNet generally achieves better true positive rates 
than the ViT for false positive rates (FPR) < 0.1. For FPR > 
0.1, however, the ViT achieves better TPR values. This trend 
is also visible in the PR curves displayed in Figure 9. The 
PR curve trajectories are generally similar for both models, 
but ResNet achieves a slightly better trade-off between recall 
and precision over all classes. Especially for larger recall 
values > 0.8, ResNet can longer maintain a higher precision 
value than the ViT model. 

Both models can recognize step structures, martensite 
structures and remnants of the initial roughness very reliably. 
The precision at a detection rate of >90% is also >90%, mak-
ing both models suitable for the reliable detection of surface 
structures in the automation of the laser polishing process. 
With a detection rate of >80% at a precision of >80%, holes 
are also detected with sufficient reliability. Only undercuts 
and bulges, as well as ripples, are detected with insufficient 
precision at detection rates of >80%. This could be partly 
due to the type of labelling. Since each WLI measurement 
was annotated as a whole and then broken down into smaller 
patches, it cannot be guaranteed that all patches have correct 
ground truth for very locally occurring structures like holes. 
This can have a negative impact on both training and the cal-
culation of accuracy, precision, and recall.  

 
 

Fig. 8 ROC comparison between ResNet-18 (top) and  
ViT-S/8-144 (bottom). 

Fig. 9 Precision-recall comparison between ResNet-18 (left) 
and ViT-S/8-144 (right). 



 
JLMN-Journal of Laser Micro/Nanoengineering Vol. 20, No. 1, 2025 

 

5.3 Effort discussion 
In addition to the qualitative and quantitative perfor-

mance differences between ViT and ResNet models, the im-
plementation effort and hardware requirements are factors 
that should not be neglected. While the ViT models pre-
trained with data2vec and frequency masking deliver similar 
results to ResNet models pretrained on ImageNet, the imple-
mentation effort for the latter is many times lower. ResNet 
models and the associated ImageNet weights are publicly 
provided by PyTorch and the implementation these models 
to the tasks described in this paper can be implemented by 
an experienced data scientist in a few days. The computa-
tional requirements for training a ResNet-18 model are also 
already met by mid-range consumer GPUs. ViT models with 
corresponding ImageNet weights are also provided by 
PyTorch, but self-supervised learning methods such as 
data2vec are not. The source code for this is also public, but 
a transfer to special application like in this work is compli-
cated to implement. Custom modifications such as the addi-
tion of frequency masking and the conversion to FlashAtten-
tion2 require extensive expert knowledge and can take sev-
eral weeks. The training of these models can also be per-
formed on consumer GPUs, but especially the pre-training 
requires several high-end consumer GPUs due to the long 
training time and large amounts of data. In addition, 
NVIDIA GPUs have only been optimized for the efficient 
calculation of Attention since the Ampere architecture [29], 
which means that FlashAttention2 does not run on older 
GPU models. In a concrete comparison, an RTX 3090 can 
feed 1,600 images packed in batches of 64 per second 
through the ResNet-18 model in evaluation mode without 
calculating gradients. For the ViT-S/8-144 model, the same 
GPU could handle 1,400 images with the same setup. This 
difference is negligible in the later application on the 
shopfloor. 

6. Conclusion and outlook 
The presented work investigates on the feasibility of sur-

face structure classification in the context of laser polishing 
of metals using white-light interferometry (WLI) images. 
For this purpose, a new data set of WLI images was formed 
and over 2,500 images annotated on the occurrence of sur-
face structures by process experts from the Fraunhofer Insti-
tute of Laser Technology. We cover data set formation, data 
preparation using a three-step data pipeline and in-depth ma-
chine learning comparing Vision Transformers (ViTs) and 
Convolutional Neural Networks (CNNs).  

Our results demonstrate that both model types are effec-
tive in recognizing surface structures in white light interfer-
ometry measurements. In comparison the state-of-the-art 
model, ResNet, slightly outperforms the ViT models. Pre-
training of ViT models and employing a novel methodology 
to mask frequency ranges during pre-training have signifi-
cantly narrowed the performance gap between the ViT mod-
els and ResNet. Here, we showed how pre-training can be 
performed using the self-supervised learning approach, 
data2vec. The methodology of self-supervised learning 
shows interesting use cases, where unannotated data is vast 
and annotation expensive (Compare Figure 7). With this ap-
proach ViT models can store information on large, unanno-
tated data sets which allows for easy downstream applica-
tions such as anomaly clustering and searching. If the focus 

is on implementing surface structure recognition with mini-
mal effort, the use of a ResNet model pretrained on the huge, 
online available dataset “ImageNet” is still recommended 
according to our research. 

In addition to this work, the pre-training of the ViT mod-
els can be further optimized by using an even larger data set 
or by further exploring the method of frequency masking. It 
would also be of interest to examine whether the inclusion 
of WLI measurements from different (laser) processes in the 
pre-training dataset has an influence on the quality of the en-
codings learned. Secondly, it is worth investigating how pre-
trained ViT models adapt to few-shot fine-tuning, i.e., down-
stream applications with little annotated data.  

With our findings we help in automated surface structure 
recognition, with which we close the gap towards more au-
tomated process parameter optimization to help reduce staff 
time and make the optimization process more efficient. A 
logical next step is to work on a process parameter optimi-
zation pipeline which makes use of automatically recog-
nized surface structure information and compare this ap-
proach versus standard design of experiments. 
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