
JLMN-Journal of Laser Micro/Nanoengineering Vol. 19, No. 1, 2024

Platform for Adaptive Integration of Data-Driven Models And
Simulations Into Ultra Short Pulse Manufacturing Systems

Moritz Kröger*1, Corvin Lasogga2, Martin Kratz2, Christian Hinke1, and Carlo Holly2

1 Chair for Laser Technology LLT, RWTH Aachen University, Aachen, Germany
2 Fraunhofer Institute for Laser Technology ILT, Steinbachstraße 15, 52074 Aachen, Germany

*Corresponding author’s e-mail: moritz.kroeger@llt.rwth-aachen.de

The field of simulation and machine learning models for ultra-short pulse (USP) ablation manu-
facturing has seen significant advancements. These models utilize advanced algorithms and mathe-
matical techniques to predict ablation during material interaction or optimize process parameters, re-
sulting in improved precision and efficiency. However, the integration of these systems into produc-
tion is lacking due to the monolithic design of control software. This design, characterized by tightly
coupled components and limited modularity, makes it difficult to incorporate new technologies and
updates. Additionally, the computational power required for simulations and machine learning algo-
rithms exceeds the capabilities of traditional shopfloor computers. To address these challenges, a mi-
croservice-oriented software design is proposed. Microservices allow for the flexible inclusion of
data-driven models by deploying and scaling individual components independently. This enables
quick adaptation to changing processes, materials, and business requirements. Moreover, micro-
services offer the flexibility to use multiple models and algorithms, resulting in a more agile system.
However, the infrastructure requirements of a microservice-style architecture are higher compared to
a monolithic architecture. The authors will discuss the general architecture, software components, and
advantages and disadvantages of controlling USP production machines with a microservice-style ar-
chitecture.

Keywords: ultrashort pulse laser manufacturing, USP, Ablation, Microservices, CNC, spatial light
modulator

1. Introduction
Ultrashort pulse (USP) laser manufacturing has emerged

as a disruptive technology that enables the fabrication of in-
tricate structures with unmatched precision. However, the
realization of USP manufacturing's full potential is hindered
by the lack of a comprehensive framework that seamlessly
integrates hardware control, measurement sensors, and pro-
cess simulations [1].

Ideally, the USP manufacturing process would incorpo-
rate a feedback loop which enables the assessment of the
current state of the produced part using different sensor tech-
nologies and afterwards data analytics, simulation or AI to
react dynamically in case of unforeseen errors or deviations.
Fig. 1 shows a schematic of this ideal feedback loop. The
process would therefore consist of a traditional Computer-
ized Numerical Control (CNC) manufacturing loop which is
paused to assess the current parameters of the CNC loop.
This pause could be used to tweak, for example, laser pa-
rameters to adapt the ablation or could incorporate post-pro-
cessing steps to ensure a homogenous ablation.

However, the traditional monolithic architectures used in
manufacturing control systems struggle to accommodate
this dynamic and rapidly evolving requirement of the USP
manufacturing processes.

To overcome these limitations, we propose the adoption
of microservices, a modular architectural style, to empower
USP manufacturing. Microservices provide several ad-
vantages, including enhanced flexibility, scalability, and

modularity [2, 3], which are essential for accommodating
the intricacies and interdependencies inherent in USP man-
ufacturing processes. By breaking down the system into
loosely coupled microservices, each responsible for specific
functionality, we can efficiently control USP manufacturing
hardware, seamlessly use measurement sensors like cameras
or 3D metrology sensors and integrate simulations and AI
models into the running manufacturing process.

Fig. 1 Ideal in situ process optimization.

2. Traditional Monolithic Approach
Current USP manufacturing systems typically comprise

the following components:
• Laser source
• Galvanometric scanner

Process start Process endProcess

Analysis of
process data

Generation of
process data by

• Actuators
• Sensors

Storing of
process data

Insights due
to analysis

Process adaptation
based on analysis

Traditional CNC Approach

DOI: 10.2961/jlmn.2024.01.2002

10

JLMN-Journal of Laser Micro/Nanoengineering Vol. 19, No. 1, 2024

• Movement system (3D linear axes stage)
• Additional measurement sensors
• Additional support hardware

(door locks, debris vacuum systems etc.)
The control software the operator controls the USP ma-

chine with is typically designed according to a monolithic
software approach. Monolithic software is a design pattern
where all components of an application are bound together
into a single executable system [2]. Fig. 2 shows an example
architectural design of a USP control software. The user in-
terface and the controller are bound together into a single
software application on the manufacturing machine. The
main job of the controller is the coordination of all hardware
components of the machine. The controller is also responsi-
ble for logging and monitoring the state of the overall system.
The controller typically use vendor-specific drivers and in-
terfaces to talk to individual hardware components.

This monolithic style of architecture has the following
advantages:

Monolithic systems are simple by design since the de-
velopment approach is straightforward. All components re-
side in the same application and the communication between
the constituent hardware components is managed by one
system, reducing complexity. [4]

The inclusion of all hardware components in a single
system also raises the performance since the communication
between components is not carried out over a communica-
tion bus like Ethernet and less overhead is generated through
network calls. However, the capability of the application is
limited to the computing power of a single computer. [6]

This design also simplifies the testing of the software
since all components and their interaction are tightly coupled
together. The workflow of the system is clear which makes
the testing process straightforward and easy to implement,
resulting in less buggy software and more resilience. [4]

Monolithic software also increases the development
speed while remaining under a certain level of complexity
[5]. Developers can understand the complete architecture.

Since all software modules are tightly coupled in a single
binary the deployment and update of the control software re-
mains simple. Updating to the latest version, therefore, con-
sists of downloading and installing the latest software re-
lease.

The single codebase and framework selection also sig-
nificantly increases team collaboration and the compatibility
of functions and classes. All developers and software mod-
ules are written in the same language which makes develop-
ing the system less complex. Since all team members use the
same programming language and software frameworks, the
ground for collaboration is set.

In the eyes of the authors, the monolithic software design
is the de facto standard in the USP manufacturing domain as
well as the machine control domain in general. Reasons for
that could be the simplicity of the design paired with very
high performance, which is often needed when producing on
mass, as well as a very robust system which simply works.
Especially in manufacturing, the focus on high reliability is
often the dominant aspect of a control system which makes
a monolithic system a perfect match for systems which have
low variability and high throughput.

Fig. 2 Example of monolithic software architecture

for USP machine control.

But considering that the USP ablation process holds, in
theory, the potential for adapting the ablation strategy on de-
mand, the monolithic software design shows significant dis-
advantages. Especially in research, these shortcomings ac-
tively hinder the adoption of simulations and analytics.

Limitation 1: Limited Adaptability
The tight coupling of hardware components and their

software modules leads to a control system that is difficult
to be changed [2,6]. Changes must be introduced by the con-
trol system manufacturer. Especially in research, this leads
to complicated procedures where new sensor technologies,
analytics or simulations cannot be integrated easily into an
existing control system.

The integration of new components into an existing USP
machine without the knowledge of the machine manufac-
turer leads to very complicated systems where information
is scattered across multiple subsystems making the system
very complex to use. Also, the monitoring and logging ar-
chitecture is often closed and not extensible.

Limitation 2: Limited Computing Resources
Monolithic systems run on a single computer and are

therefore bound to the resources of a single computer [2,6].
Current trends in the USP ablation domain include the inte-
gration of high-speed FPGA sensors [7], metrology sensors,
etc. which put significant stress on the underlying computing
resources. Some systems already need dedicated computers
to operate on. The size of the data these sensors generate can
also be quite significant which again puts stress on the stor-
age of the underlying computer. Databases or object stores
to save measurement data are not implemented up to this
date which actively hinders the reuse of data between ma-
chining jobs. But especially, this big data is required for the
training of AI models. Furthermore, AI and simulations must
often run on multiple computing cores or graphics cards.
Running multiple simulations or analytic models in parallel,
which are in theory required for an adaptive USP process, on
a single machine, therefore, becomes quite challenging from
a computing perspective.

Limitation 3: Dependency Hell
Monolithic control software put all software dependen-

cies on a single computing device. Installing the drivers of
all hardware components on a single computing device can
lead to inconsistencies and dependency conflicts [2,6]. The
integration of new measurement sensors or algorithms can
therefore lead to a complete failure of a manufacturing sys-
tem just by installing its software dependencies. Again, this
hinders the use and especially the dynamic update and de-
ployment of simulations and other analytical systems in a

Monolithic Control Software

User Interface
Controller

Galvano-
metric

Scanner

Driver

Movement
System

Driver

Laser
Source

Driver

Sensors

Drivers

Support
Hardware

Drivers

11

JLMN-Journal of Laser Micro/Nanoengineering Vol. 19, No. 1, 2024

production environment where reliability and uptime are the
keys.

3. Microservice Concept

Microservices have emerged as an architectural software
style which allows the building of large distributed applica-
tions. The pattern was introduced by several web industry
players like Amazon, Netflix, and Uber to conquer the rising
complexity and demand of their software systems. A micro-
service is a single server system that exposes a limited set of
functions to its clients, enabling other systems or users to
remotely connect to this system and trigger this functionality.
This design leads to a decoupling of functionality since the
overall application is split into multiple smaller services
which communicate over a predefined interface imple-
mented by a lightweight and open messaging protocol. This
leads to several advantages:

The modularity and independence of the system increase
since each microservice is responsible for a single function.
Every service is deployed separately, which enables individ-
ual updates as well as the integration of new services into the
system on demand [2,3]. In USP manufacturing, the soft-
ware style ensures that new measurement sensors, functions,
or models can be integrated into an existing USP machine
on demand.

The use of a well-defined interface description language
which defines the API of the services enables a loose cou-
pling of the services. This loose coupling ensures that the
individual services can operate independently of each other.
It also ensures that the services do not have to run on the
same computing device but can be distributed across multi-
ple computing nodes[3]. For usage in USP manufacturing,
this leads to the benefit of not being bound to a single com-
puting device but that computing resources can be scattered
across the edge and the datacenter.

Microservices enlarge the technology diversity since the
usage of open data exchange protocols like HTTP does not
lock the user into a specific programming language. There-
fore, a developer can choose the most suitable technology
stack for a given task without influencing other subsystems.
The only applied constraint is the used communication tech-
nology [2,3]. In USP manufacturing this has the advantage
of being able to adapt the used programming libraries and
language to the task at hand. Simulations are often written in
C++, while data analytics are typically written in Python.
Control software for USP machines, however, is often writ-
ten in C#. The microservice approach enables a simple data
transfer between all these subsystems independently of the
used programming languages.

Microservices can be deployed independently on differ-
ent computing nodes. This leads to fine-grained control over
the system resources as well as the underlying dependencies
[2,3]. In USP manufacturing, this is especially useful since
simulations, data processing and data analytics can have dif-
ferent requirements on the underlying computing hardware.
The usage of this architectural pattern ensures that the sub-
systems do not influence each other.

Due to the decoupling effect of microservices, team au-
tonomy and the possibility for parallel development are en-
hanced [3]. Multiple actors can work on individual services
at the same time. In the domain of USP manufacturing, these
actors could even be split across different partners or

companies updating the system on demand without disturb-
ing other subsystems.

Every microservice runs in an isolated environment in-
dependently. This leads to greater fault isolation since errors
in one subsystem do not leak into the other subsystems.

Due to the distributed nature of microservices, monitor-
ing, logging and automated deployment becomes signifi-
cantly more complex [3]. Therefore, frameworks are re-
quired which can aggregate logs and monitor metrics across
multiple services to allow operators of the application to as-
sess the system’s state [8]. Especially in this infrastructure
area, open-source projects like Prometheus, Jaeger, Fluentd
or Kubernetes have emerged, enabling the creation of open
and connected systems which prevent vendor lock-ins.

4. Microservice Architecture for USP

Microservices inherently solve some of the limitations
discussed in Chapter 2. However, to map a USP control sys-
tem into microservices, the following questions must be an-
swered:

• What functionality must be included in a microservice
architecture for manufacturing machines?

• Which infrastructure is needed to run the microservice
system on the shop floor?

To answer the question about service functionality, a pre-
definition of service categories is crucial since it defines the
purpose of the services.

Following the functional viewpoints of the Industrial In-
ternet Reference Architecture [9], we define the following
service categories:

• Control
• Information
• Application
• Operations
The control category comprises hardware and control

services and represents the connection of the USP manufac-
turing software to the physical system.

Hardware services build a direct bridge to hardware de-
vices like galvanometric scanners, lasers, or movement sys-
tems. The services include the vendor-dependent drivers of
the underlying hardware devices and expose their function-
ality as simple service functions. For a movement system,
these functions can be, for example, MoveToPosition or
GetCurrentPosition. The hardware services can be split fur-
ther down into actuator services and sensor services. Hard-
ware services must not communicate with other services
since their only purpose is to provide a standardized, vendor-
neutral interface to the underlying hardware devices.

Control services compose functionality across multiple
hardware Services or other control services. In the context
of USP, an example of a control service might be a Dis-
tance Measurement Service which calculates and realizes
the required movement calls for a movement service to place
a specific workpiece underneath a distance sensor. Control
services, therefore, enable adding smart automation func-
tionality to the system, aggregating the functionality of mul-
tiple hardware services and offering it as a simple service
call to the user. Control services can also be used to connect
to data services to fulfil their function or save data points.
An example of such a setup would be a control service that
controls the laser power of a given laser by the usage of a

12

JLMN-Journal of Laser Micro/Nanoengineering Vol. 19, No. 1, 2024

data service that holds experimental data from former abla-
tion experiments.

A data service, therefore, provides the possibility to in-
troduce experimental or simulation data into the system.
They are used to hold information in databases and provide
unified, predefined, API-based access to the data. A data ser-
vice, therefore, provides the functionality to store and access
data in a predefined schema. An example in the USP domain
would be a service that holds laser calibration data from
power measurements or an experiment service which stores
metadata of laser ablation experiments. Data services are ac-
cessible by control services and analytics services.

Analytics services hold specific algorithms like simula-
tions, data analytics or machine learning algorithms. In gen-
eral, they are abstract services that provide specific data-
driven functionality to other clients in the system. Examples
of this in the USP domain are ablation simulations or pro-
viders of laser parameters that define the needed laser flu-
ence for a target depth or target roughness based on experi-
mental data. The specific split of this functionality into its
own service group makes the algorithms exchangeable and
manageable by different stakeholders. Also, the services can
be located on different computing nodes which works espe-
cially well for simulations and machine learning algorithms
since these can have significant computing requirements.
Data services and analytics services are located in the infor-
mation category.

The user interface that allows the control of all these ser-
vices is the job controller. The job controller is located in the
application category and coordinates the information and ex-
ecution flow of the application. This could be for example
the feedback loop discussed in Fig 1.

Since the job controller and other services connect re-
motely to services all systems must be reachable by a remote
API. This allows all services to be placed on individual
nodes. Hardware services which provide access to compu-
ting-intensive sensing devices like 2D metrology sensors or
high-speed FPGA Systems for camera or photodiode acqui-
sition [7] could be installed on individual nodes resulting in
less coupled systems that can be installed and changed easily.
Data storage systems can be placed in a datacenter providing
easier and cheaper access to storage. Also, data services
could be shared across multiple computing nodes leading to
decreased costs and the possibility of building large-scale
datasets. Similar effects could take place for computing-in-
tensive analytics services since they have high demands on
computer resources. Scaling and sharing these kinds of ser-
vices across multiple computing nodes through edge or
cloud server systems can have significant impacts on the
computing cost of the overall system.

The operations category represents the frameworks
needed to operate all the other services. An orchestration and
networking tool must be in place to organize services across
multiple computing nodes. This system must manage the de-
ployment and observe the state of the services as well as the
running computing systems of the hardware devices. It
needs to be capable of managing installed drivers as well as
allowing connected hardware devices to be accessed by the
running services. Also, the system must enable the manage-
ment of networking rules to implement security mechanisms
for microservice access.

The other component of the operations category is mon-
itoring and logging. Since microservices are a distributed
system a single place for logging, tracing, and monitoring of
service calls must be in place. Logging enables the under-
standing of the current state of a service, while tracing ena-
bles following a service call through the complete system to
identify the root of an error. Monitoring enables gathering
metrics about each service to improve its performance.

An overview of the complete architecture as well as its
service categories is shown in Fig 3.

Fig. 3 Overview of the microservice categories.

5. Required Infrastructure

To build a microservice system several technologies
must be combined. Especially in research, all these technol-
ogies should be open-source to prevent vendor lock-ins or to
enforce researchers in reusing system components from col-
leagues.

The following requirements for the infrastructure arise:
Microservice Requirement 1: Every microservice

needs an API and Remote Execution System to allow other
services and applications to connect to the system and exe-
cute functions.

Microservice Requirement 2: Microservices need to be
deployed on computing nodes without the need for the in-
stallation of drivers. The technology needs to allow the ser-
vices and all their dependencies to start automatically. The
result would be a flexible system where hardware and ana-
lytics services can be placed flexibly on individual compu-
ting nodes without the need for a special system setup.

Operation Requirement 1: An orchestration or cluster
management tool is needed that enables the scheduling of
the microservices on different computing nodes. This tool
should be open-source to allow a vendor-independent exten-
sion of the system.

Operation Requirement 2: In a microservice architec-
ture, network calls are the standard way of transporting in-
formation between the different services. Since services are
spread across multiple computing nodes, a network and fire-
wall management system is required for cyber security.

Operation Requirement 3: Microservices are a distrib-
uted system. Individual services can fail, or network calls
can be routed wrong. Therefore, systems must be in place
which aggregate logs of each microservice, collect metrics
about the state of every microservice, and enable the tracing
of individual calls through several microservices. The sys-
tem needs to be adaptable to all kinds of services.

There exist several API tools for service-based commu-
nication on the market like OpenAPI, gRPC, or OPC/UA,

Data
Services

Physical
System

Job
Controller

Control

Actuator
Services

Sensor
Services

Hardware
Services

Analytics
Services

Control
Services

Orchestration
& Networking

Monitoring
& Logging

LOG

!Command Flows

Application

Operations

Data/Information Flows
Decision Flows

API

API

API

API

API

Information

API

API API

API

13

JLMN-Journal of Laser Micro/Nanoengineering Vol. 19, No. 1, 2024

amongst others. These systems allow designing the remote
API of the service in a domain-specific language which is
translated into programming classes. These classes can af-
terwards be implemented. Especially in USP manufacturing,
the data that must be transported between the different mi-
croservices can be quite large. A message for a galvanomet-
ric scanner can comprise several million lines that need to
be scanned. Therefore, an API system which transports bi-
nary messages and not text messages is required. OpenAPI
typically sends JSON-formatted ASCII messages. OPC/UA
allows sending ASCII-based JSON or XML messages as
well as binary messages. gRPC uses the binary format Pro-
tobuf to send messages. Microservice requirement 1 is there-
fore fulfilled using either OpenAPI, gRPC, or OPC/UA. In
this prototype, gRPC is chosen since it supports binary mes-
sage formats and is open-source. The response time from
gRPC, which is for all supported programming languages
below 0.5 ms is considered to be sufficient [1].

Microservice requirement 2 focuses on the packaging of
the microservices with all their dependencies. For hardware
services, this involves especially the inclusion of the hard-
ware drivers. In the web industry, containerization technol-
ogies have become the de facto standard for this task. Con-
tainers are lightweight, isolated software environments that
package applications and their dependencies, enabling con-
sistent and efficient deployment across different computing
environments. This technology, therefore, is ideal for use in
USP manufacturing systems where sensors, databases, and
data analytics need to be changed on demand.

Open-source technologies for containerization are
Docker, Podman or containerd. All these tools are conform-
ant to the industry standard of the Open Container Initiative
and are therefore interchangeable. Because of the large
open-source community and its ease of use, Docker is used
for this prototype.

To fulfil Operation Requirement 1, a container schedul-
ing system for computer clusters is needed. In this area, sev-
eral open-source projects exist like Apache Mesos, Docker
Swarm, Nomad, and Kubernetes. Most of these frameworks
can be used interchangeably to manage containers in a com-
puter cluster. Also, running an in-depth analysis of all frame-
works is not in the scope of this paper. In this prototype, Ku-
bernetes is used due to its large open-source community.

Operation Requirement 2 is a general problem for web-
based application development. Therefore, several projects
exist that focus on the implementation of a service mesh. A
service mesh is a dedicated infrastructure component in a
computing cluster that helps to manage communication be-
tween microservices as well as implement security controls
between services. Typically, a service mesh works by start-
ing a second sidecar container next to the microservice
which intercepts the incoming and outgoing traffic of the mi-
croservice. The service mesh can control the incoming and
outgoing traffic by providing specific filtering or routing
rules to the sidecar container. Examples of open-source ser-
vice mesh projects are Istio, Linkerd and Consul. Again, the
complete analysis of all projects would be out of the scope
of this paper. However, when designing such a system, a ser-
vice mesh must be in place to ensure authorized and secure
communication between the microservices. In this prototype,
Istio was chosen for this task.

Operation Requirement 3 is already partially fulfilled by
Kubernetes since it aggregates the logs that are produced by
the microservices.

To monitor the metrics of the application, the cloud na-
tive computing foundation recommends the use of Prome-
theus. Prometheus is a system that exposes metrics of a mi-
croservice (for example the current laser state or the current
laser power consumption) on a specific web server. A Pro-
metheus crawler can collect these metrics in predefined in-
tervals to collect metrics about the running system and ag-
gregate them in a time series database. This database can af-
terwards be centrally visualized using open-source tools like
Grafana or Kibana.

The last requirement is the need for tracing. Since a call
to a microservice can make this microservice call another
service, a tracing tool enables following the call through all
the microservices. Thus, a tracing tool provides valuable in-
side when working with a microservice system especially
when errors occur. At the point of writing, multiple tracing
tools like Jaeger or Zipkin exist. Comparing all the alterna-
tives would be out of the scope of this paper. In this proto-
type, OpenTelemetry is used to create the traces in the indi-
vidual services, while Jaeger serves for collecting and visu-
alizing the traces.

In summary, we can conclude the required tools for a
prototype microservice-based USP manufacturing system as
follows:

• gRPC for API design and execution of remote proce-
dure calls,

• Docker for containerization of all services,
• Kubernetes for deploying and orchestrating containers

across multiple computing nodes in a cluster,
• Istio for service mesh functionality and network secu-

rity,
• Kubernetes for log aggregation,
• Prometheus for the collection of microservice metrics

and Grafana for their visualization, and
• OpenTelemetry for creating traces and Jaeger for their

collection and visualization.

All these tools are used in professional web development
and are stable and open-source, resulting in an open and ex-
tensible setup for USP research that is based on stable and
proven software frameworks.

6. Example Implementation

To demonstrate the flexibility of the system in this paper,
multiple use cases are discussed. The use cases are proto-
types to showcase the desired feedback loop as shown in Fig.
1. The manufacturing system for the prototype is the laser
machine RDX 800 of Pulsar Photonics. The hardware com-
ponents of the system are:

• Galvanometric scanner:
Scanlab ExcelliScan with RTC6-Ethernet Controller

• Movement system:
Aerotech - A3200 with X/Y/Z-movement stages

• Laser source:
Edgewave FX600 Femtosecond laser

• 3D White light interferometer (WIM):
GBS smartWLI Extended

14

JLMN-Journal of Laser Micro/Nanoengineering Vol. 19, No. 1, 2024

• Spatial light modulator (SLM):
Hamamatsu LCOS-SLM X15223 (self-integrated)

Fig. 4 shows an overview of the used hardware compo-

nents inside the RDX 800.

6.1 Data acquisition usecase
The first use case focuses on the introduction of a 3D WIM
sensor into a USP process to enable the fast generation of
surface data of ablated cavities. Compared to the schematic
in Fig. 1, we, therefore, demonstrate the acquisition and the
storing of process data to allow other researchers to utilize
this data.

The use case comprises a material characterization ex-
periment. This type of experiment is typically executed by
ablating small cavities on a material target which is after-
wards measured by a metrology sensor. The aim of this use
case is the automatization of the experiment. It therefore
demonstrates the integration of aggregation and database
systems into the USP process which is a crucial step for data-
driven analytics to generate large amounts of data, for exam-
ple, for AI algorithms.

The following services are implemented to realize the
use case:

• Hardware Services
o Axes Movement Service (represents A3200 con-

troller)
o Scanner Service (represents RTC6 controller)
o Laser Parameter Service (represents FX600 Con-

troller)
o WIM Service (represents GBS controller)

• Control Services
o Coordinate System Management Service
o Metrology Acquisition Service

• Information Services
o WIM Storage Service
o Cavity Experiment Service

• Application Service
o Workflow Execution System (JupyterHub)

As discussed in Chapter 4, the task of the hardware ser-
vices is to expose the functionality of the underlying hard-
ware components to other services. Examples of this are the
Axes Movement Service which offers functionality like
MoveToPosition and the Scanner Service which offers the
function ScanWorkplane where the next work plane contain-
ing hatches and line patterns is streamed to the scanner.

The job of the Coordinate System Management Service
is to define a spatial relation between services. The service
provides the possibility to move a specific workpiece point
into the center of the galvanometric scanner or the WIM. The
service is designed in such a way that the system can be ex-
tended on demand and coordinate systems for new sensors
can be added.

Fig. 4 Overview of the used hardware components.

The purpose of the WIM Storage Service is to provide a
standardized endpoint for saving and retrieving WIM meas-
urements in a database. The Metrology Acquisition Service
combines the WIM Service and the WIM Storage Service by
triggering a metrology measurement through the WIM ser-
vice and saving it afterwards automatically in the WIM Stor-
age Service.

The Cavity Experiment Service can save an experiment
in a database and link it to the corresponding WIM measure-
ments. An experiment entry also provides further metadata
about the cavity itself like the used laser power, the scan vec-
tors, the position on the workpiece or the time of execution,
amongst others, which might be useful for further analytics
of the data.

The whole system is controlled by a Workflow Execu-
tion System, called JupyterHub, which can connect to all ser-
vices remotely via Python and orchestrates the dataflow and
the experiment execution. JupyterHub is a browser-based
Python execution system. The system runs on a datacenter-
node which reduces the loading times of datasets from the
WIM storage service and cavity experiment service. Since
the system is browser-based, researchers and operators can
work on scripts on the shopfloor machine and afterwards
switch seamlessly to a laptop in the office.

Overall, the automated experiment execution speeds up
the data generation significantly. The setting of laser param-
eters programmatically via Python requires less than 450 µs.
The scanning of a work plane depends on the vector param-
eters like pulse overlap, jump speed and the number of geo-
metrical primitives in the layer. The cavity experiments un-
der consideration take up to a few seconds. The generation
of 3D metrology samples of an ablated cavity depends on
the cavity depth. In our experiment run, the maximum

Movement System

Workpiece

Galvanometric
Scanner

White Light
Interferometer

Spatial Light
Modulator

15

JLMN-Journal of Laser Micro/Nanoengineering Vol. 19, No. 1, 2024

amount of time taken was 108 seconds for a WIM measure-
ment. Combined with the scan time of a cavity, a single ab-
lation experiment takes a maximum of 120 seconds, result-
ing in at least 720 experiments per 24 hours. Depending on
the ablation depth, the cavity size and the scan area of the
WIM, the number of experiments per day could rise however
significantly.

The integration of the information services into the
datacenter leads to less time spent in copying and document-
ing the experiment. Measured cavities can be analyzed as
soon as they are measured. No time is spent copying data on
external storage devices resulting in less waiting time for
data analysts and researchers.

Overall, the authors experienced a homogenization of
tooling in experiment execution since most systems behave
similarly and data flows easily from one service to the next.
The execution of experiments is sped up significantly and
the analysis of the experiment data is homogenized since
data is already prepared and stored in a searchable and con-
sumable form, giving data analysts and simulation research-
ers a platform to build and validate their models. Since data
generation is sped up more data samples are generated which
provides AI researchers with large enough datasets that have
statistical significance leading to more stable and robust
models.

6.2 Cavity auto depth use case

The second use case focuses on closing the feedback
loop as shown in Fig. 1. It demonstrates an adaptive USP
ablation process integrating sensor systems for process state
analysis.

This use case focuses on the single-beam postprocessing
of multi-beam cavities. Spatial light modulators which are
often used for dynamic multi-beam shaping can lead to in-
homogeneous energy distributions between spots. While this
is not a problem for drilling holes into foils certain applica-
tions may require a precise depth of cavities. The used mi-
croservices in this use case are:

• Hardware Services
o Axis Movement Service (represents A3200 control-

ler)
o Scanner Service (represents RTC6 controller)
o Laser Parameter Service (represents FX600 Con-

troller)
o WIM Service (represents GBS controller)
o SLM Service (represents Hamamatsu Controller)

• Control Service
o Coordinate System Management Service

• Application Service
o Workflow Execution System (JupyterHub)

Compared to the first use case, the system also intro-
duces the SLM Service which enables a dynamic switching
of the SLM phase mask on the fly. The Axis Movement Ser-
vice, the Scanner Service, the Laser Parameter Service and
the SLM Service are scheduled via Kubernetes on a single-
edge device connected to the manufacturing machine. The
WIM Service is located on another edge device with larger
GPU resources to enable efficient analytics of the WIM cam-
era pictures. The Coordinate System Management Service
and the JupyterHub are scheduled on an arbitrary datacenter
node. It must be pointed out that no information service is

used in this use case. The storing and evaluation of the WIM
measurements are executed directly in the Workflow Execu-
tion System. However, in the future, the evaluation can be
externalized and moved into the information domain.

The Workflow Execution System is therefore responsi-
ble for accessing, evaluating, and generating sensor data and
the scanner move path.

The experiment is split into multiple phases:
1. Single-beam characterisation
1.1. Initial topology measurement of the process area
1.2. Single-beam cavity ablation
1.3. Topology measurement of ablated cavity
1.4. Characterisation of average ablation depth per rep-

etition
2. Multi-beam ablation
2.1. Initial topology measurement of each process area
2.2. 5 x 3 multi-beam cavity ablation
2.3. Topology measurement of each ablated cavity
2.4. Determination of ablation depth of each cavity
3. Single-beam post-processing, harmonizing abla-

tion depth
3.1. Calculation of single-beam post-processing strate-

gy
3.2. Single-beam post-processing of each cavity
3.3. Topology measurement of each post-processed cav-

ity
3.4. Determination of error and standard deviation

The phases can be mapped on the feedback loop in Fig.

1. The ablations of cavities (steps 1.2, 2.2, and 3.2) represent
classic CNC-processing steps. The topology measurements
(steps 1.1, 1.3, 2.1, 2.3, and 3.3) correspond to the acquisi-
tion of process data. The analysis of the topology measure-
ments (steps 1.4, 2.4, and 3.4) represents the analysis of pro-
cess data and gives insights into the process. These insights
can be used in step 3.1 to adapt the process in situ, which
closes the feedback loop as presented in Fig 1.

In phase 1, the single-beam ablation system is character-
ized for post-processing. The Workflow Execution System
moves the process area underneath the WIM with the help
of the Coordinate System Management Service and triggers
an initial topology measurement of the unprocessed area by
a call to the WIM service (step 1.1). Afterwards, the Work-
flow Execution System generates the scan hatches to pro-
duce a squared cavity with a side length of 300 µm, bidirec-
tional hatches and a pulse and line overlap of 70%. Using,
the Laser Parameter Service, the repetition rate of the laser
is set to 300 kHz and the laser power to 2.86 W. All these
process parameters are saved in preparation for the post-pro-
cessing phase 3. The Workflow Execution System uses the
Coordinate System Management Service to move the pro-
cess area underneath the galvanometric scanner and sends
the scan hatches 50 times to the Scanner Service, resulting
in the ablation of a single cavity in the process area (step 1.2).
Hereafter, step 1.1 is repeated, the process area is moved
back underneath the WIM and a topology measurement of
the ablated cavity is triggered. The topology measurements
are saved as a calibration file for the specific workpiece ma-
terial and laser parameters (step 1.3). Comparing the mean
height of a patch of both topology measurements, the Work-
flow Execution System calculates the ablation depth of the
cavity respectively the average ablation depth per repetition

16

JLMN-Journal of Laser Micro/Nanoengineering Vol. 19, No. 1, 2024

�𝑧𝑧/𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟�𝑎𝑎𝑎𝑎𝑎𝑎 as characterizing process variable of the single
beam (step 1.4).

In phase 2, the same procedure is repeated for the multi-
beam ablation, in which 15 cavities are ablated simultane-
ously. In step 2.1, the topology of the unprocessed work-
piece area is measured. Here, the Workflow Execution sys-
tem uses the Coordinate System Management Service to
place each of the 15 cavity positions underneath the WIM
and calls each time the WIM Service to trigger a topology
measurement. The positions and the topology measurements
are stored together as a file in the datacenter. Hereafter, the
Workflow Execution System calls the SLM Service to
switch the phase mask of the SLM. In this use case, the phase
mask is calibrated to generate a specific beam path that pro-
duces 3 x 5 Gaussian laser spots with a diameter of 40 µm
on the workpiece surface. Afterwards, the Workflow Execu-
tion System reuses the scan hatches of phase 1 and sends it
100 times to the Scanner Service, resulting in the simultane-
ous ablation of the 15 cavities (step 2.2). Figure 5 shows a
picture of this process.

Fig. 5 Picture of the running multi-beam ablation process.

To measure the topology of each ablated cavity, step 2.1
is repeated and the measurements are appended to the file on
the datacenter node (step 2.3). Afterwards, the Workflow
Execution System compares the corresponding topology
measurements and calculates the current depth of each cav-
ity 𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖, applying the same method as in the single-beam
ablation (step 2.4).

In phase 3, the cavities, created by the multi-beam setup,
are postprocessed, using a single beam. Therefore, the deep-
est of the 15 cavities is determined and its depth is set as the
target depth 𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 of all other 14 cavities. Thus, the num-
ber of required post-processing repetitions can be calculated
for each cavity by:

 �𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖
= 𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖

�𝑧𝑧/𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟�𝑎𝑎𝑎𝑎𝑎𝑎
 (1)

With the help of the Coordinate System Manager Service,
the Workflow Execution Service can transform all cavity
center positions into the coordinate system of the scanner
and can generate shifted post-processing scan hatches for
every individual cavity. The shifted post-processing scan
hatches are sent to the Scanner Service by the number of
repetitions, calculated with Equation 1. The result is a post-
processing procedure that reablates every cavity layer by
layer. The number of repetitions depends on the current

depth of the cavity and the maximum depth of all cavities.
Figure 6 shows two pictures of the post-processing of two
individual cavities. To analyze the achieved homogenisation
of the ablation depth, topology measurements of the re-
ablated cavities are executed like in steps 2.1 and 2.3.

The complete evaluation of this experiment is not in scope

of this paper.
However, the build use case demonstrates the ability to

formulate a closed feedback loop across multiple nodes con-
nected via network and managed in a manufacturing cluster.
The architecture can therefore be seen as a platform for fur-
ther research in reinforcement learning or other feedback
driven analytical methods.

The demonstration of the two use cases show that the lim-
itations formulated in chapter 2 can be mitigated.

Limitation 1: The use of open API’s like GRPC open up
the system. Components can be introduced and rearranged
on demand to fulfill multiple purposes (data acquisition or
feedback driven manufacturing) with the same set of basic
microservices. The introduction of information components
which could consist of databases, artificial intelligence mod-
els or simulations has been demonstrated. The usage of Ku-
bernetes as the standard deployment method reduces cogni-
tive overhead and homogenizes IT and OT infrastructure
systems.

Limitation 2: All use cases where spread across multi-
ple machines ranging from an on-premise datacenter to the
shopfloor. Sensor systems with significant higher resource
requirements like the WIM Sensor can be placed on individ-
ual computing nodes. Databases in the datacenter can be in-
cluded directly in the process and manufacturing logic can
be precalculated on datacenter nodes and afterwards send as
streamed commands to the machine on the shopfloor. Theo-
retically simulations and data driven methods can be sched-
uled on datacenter nodes as well giving the underlying algo-
rithms enough resources to operate efficiently.

Limitation 3: The usage of containerization tools like
Docker isolates the dependencies for individual services.
Drivers and other dependencies only influence the micro-
service that is build for its usage. This allows for plug and
play functionality where new hardware or services can be
integrated on demand into the system without risking a sys-
tem crash. The use cases were implemented in docker and
show that the containerization does not interfere with the ex-
ecution of manufacturing steps. Integrating drivers into con-
tainers and scheduling them onto nodes with this hardware
has been shown and work without interfering other systems.

7. Further use cases and integration of simulation and
AI

Fig. 6 Pictures of the single beam postprocessing.

17

JLMN-Journal of Laser Micro/Nanoengineering Vol. 19, No. 1, 2024

The proposed system in this paper has been designed to in-
tegrate more sophisticated algorithms, data analysis and sim-
ulations into the production process. While current use cases
show case the flexibility and possible distribution of the sys-
tem it has not yet been used to integrate these algorithms.

However, simulations can benefit greatly from automatic
data acquisition. Especially in this domain it would be pos-
sible to run specific calibration experiments automatically
on the fly to match and calibrate current calculations. An-
other integration point for simulations into the system could
be during the second use case. Here an initial system cali-
bration has been performed to generate an ablation curve for
postprocessing. This step is a perfect example for the inclu-
sion of dynamic on demand simulation during production.
The Workflow Execution System could for example propose
a postprocessing procedure which is validated on the fly. A
simulation service would therefore return the theoretically
ablated material based on the current metrology of the sys-
tem giving the Workflow Execution System more infor-
mation if the proposed parameters are valid or would destroy
the process.

Also, AI systems can easily be included into the archi-
tecture. First, the modelling and creation of AI models is
supported by the integration of the system into the IIRA In-
formation domain. Data acquisition is streamlined, and data
analysis becomes therefore significantly faster since most of
the time is normally spend in the data preparation. Secondly
models can be included as services. Examples would be an
AI model service which could suggest certain laser parame-
ters to ablate a specific depth or create a certain surface
roughness.

These ideas mostly influence supervised and unsuper-
vised learning algorithms, where data is generated in batches
and afterwards an algorithm is trained on this dataset. An-
other integration possibility is the introduction of reinforce-
ment learning into the system. Here the Workflow Execution
System would be exchanged by a reinforcement learning
agent that is allowed to change certain process parameters
like laser power, pulse overlap or repeats per layer automat-
ically. By the introduction of certain rule sets (Agent needs
to converge to a given target depth as fast as possible, Agent
needs to target a specific roughness) the system could decide
on a parameter set, execute this parameter set and after
wards would receive feedback through the WIM Sensor sys-
tem. After repeating this process, the machine could in the-
ory teach itself to apply to this ruleset. However typical re-
inforcement learning experiments often require more than a
few thousand episodes to converge. Mapped to the produc-
tion process which takes around 120 seconds per produced
and evaluated layer the training time for 15.000 episodes
would already take 500 hours. Again, on demand simulation
microservices could be extremely helpful in this situation
since the agent could first train in a simulated environment
and afterwards switch to a real production system. Similar
tactics have been used in the automotive industry for auton-
omous driving. Also switching from a WIM sensor to a con-
focal sensor which allows for a much faster determination of
processing depth could speed up this process.

8. Benefits and Challenges
The proposed microservice system has several benefits com-
pared to monolithic systems.

First, the system is extensible and open. This is espe-
cially useful for researchers since it allows them to introduce
new components and subsystems into the machine without
patching or “hacking” the initial software. This results in an
environment for researchers, data analysists and computer
scientist where the system embraces the introduction of new
sub-components. Using the protobuf modeling language the
designed microservices can also be integrated easier into
larger data concepts like the digital shadow reference model
as discussed by Judith Michaels et al. [11].

Also, the system complexity decreases since Information
domain and control domain services are all deployed in the
same way. From an operator view it does not matter if a hard-
ware controller or an analytics controller is deployed into the
system.

Using open-source software like GRPC, Kubernetes and
Docker vendor lock ins are prevented. The system can be
deployed on any other system and users of the system do not
need any licensing keys to use the system.

Also, using GRPC as a HTTP2 API the system can be
operated completely remotely. Not only can researchers con-
nect to the databases and information systems remotely but
also the remote control of the machine is in theory possible.
This is especially interesting for remote maintenance.

In this system Kubernetes acts a single point of configu-
ration. Especially when considering that Kubernetes is ex-
tensible to a few thousand nodes it is imaginable that the
computing clusters and their configuration of complete shop
floors could be handled by Kubernetes.

One of the largest disadvantages of this system is the de-
fault network-based API. While this API provides enormous
flexibility and reconfiguration capabilities it also opens the
door for sophisticated cyber-attacks on the system. To oper-
ate properly and safely the system components need to be
security audited regularly. While network tools like Istio
provide security and authorization possibilities further in-
vestigation needs to be done to bring the system in a fully
production ready state. Compared to a classical monolithic
architecture which can be hermetically isolated the disad-
vantage of this system becomes even clearer.

Another disadvantage of the system that it’s Infrastruc-
ture is mostly based on Linux components since this is the
de facto standard operating system for web servers and ap-
plications. The industry standard in USP manufacturing
however is Windows. While it is possible to run most open-
source infrastructure software on Windows the support for
doing so is mostly limited. The other option is to reimple-
ment most components for Linux. The authors decided for
the later.

Another disadvantage compared to monolithic systems
is the distributed nature of the system. Tracing calls across
multiple computing nodes and microservices becomes very
complicated and overwhelming and even with tools like Jae-
ger, Prometheus and Kubernetes distributed state analysis is
still complex. This leads to high introduction and lead up
times for new personal. At this point in time the system is
not usable without at least Python programming knowledge
and some sort of distributed state management knowledge.

9. Summary
In this paper a new architectural style paradigm for the con-
trol of USP machines was evaluated: the microservice

18

JLMN-Journal of Laser Micro/Nanoengineering Vol. 19, No. 1, 2024

pattern. First the current limitations of monolithic control
systems where discussed. Afterwards the microservice ap-
proach was mapped in depth into the industrial internet ref-
erence architecture and a theoretical service categorization
system has been proposed. This system proposes a categori-
zation into hardware services, control services, information
services as well as application services. Afterwards a practi-
cal guideline was given to also provide build an operation
framework for microservice which in theory would support
such an architecture.

The theoretical system has been demonstrated and tested
by several use cases. One use case focused on the generation
of large amounts of data points for further research while the
other use case show cased a WIM controlled feedback loop
across multiple computing nodes and systems. The use cases
were successful and proved to be a suitable candidate to ease
the integration of AI and simulation into the USP ablation
process. Also, the limitations of monolithic architectures
were evaluated and compared with the help of these use
cases. Afterwards the benefits and challenges of the system
have been analyzed.

Acknowledgments
Funded by the Deutsche Forschungsgemeinschaft (DFG,

German Research Foundation) under Germany’s Excellence
Strategy – EXC-2023 Internet of Production – 390621612.

The authors acknowledge the financial support by the
Federal Ministry of Education and Research of Germany in
the framework of Research Campus Digital Photonic Pro-
duction (project number: 13N15423).

We acknowledge and sincerely appreciate the support
and hardware provided by Hamamatsu Photonics K.K. for
their contribution to our research project.

References
[1] J. Ryll, J. Holtkamp and S. Eifel: PhotonicsViews, 16,

(2019) 65.

[2] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara,
F. Montesi, R. Mustafin, and L. Safina: “Present and Ul-
terior Software Engineering” ed. by M. Mazzara and B.
Meyer (Springer, 2017) p. 195.

[3] M. Fowler: online available at: https://martin-
fowler.com/articles/microservice-trade-offs.html,
(2015).

[4] S. Newman: “Monolith to Microservices. Evolutionary
Patterns to Transform Your Monolith”, ed. by C.
Guzikowski, A. Young, and N. Barber, (O’Reilly Media
Inc., Sebastopol, 2019) p. 15.

[5] M.Fowler: online available at: https://martin-
fowler.com/bliki/MicroservicePremium.html, (2015).

[6] C. Wunck: Epic Ser Comput, 63, (2019), p. 241-250.
[7] M. Zuric and A. Brenner: Proc. SPIE Vol. 11989, (2022)

119890N.
[8] M.Fowler: online available at: https://martin-

fowler.com/bliki/MicroservicePrerequisites.html,
(2014).

[9] Industry IoT Consortium: online available at:
https://www.iiconsortium.org/wp-content/up-
loads/sites/2/2022/11/IIRA-v1.10.pdf , (2022).

[10] D. Perez and L. Lewis: Phys. Rev. B Condens. Matter,
67, (2003) 184102.

[11] J. Michael, I. Koren, I. Dimitriadis, J. Fulterer, A. Gan-
nouni, M. Heithoff, A. Hermann, K. Hornberg, M.
Kröger, P. Sapel, N. Schäfer, J. Theissen-Lipp, S.
Decker, C. Hopmann, M. Jarke, B. Rumpe, R. H.
Schmitt, and G. Schuh; ”A Digital Shadow Reference
Model for Worldwide Production Labs” in Internet of
Production: Fundamentals, Applications and Proceed-
ings (Springer, 2023) p. 1.

(Received: July 10, 2023, Accepted: December 10, 2023)

19

https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/bliki/MicroservicePremium.html
https://martinfowler.com/bliki/MicroservicePremium.html
https://martinfowler.com/bliki/MicroservicePrerequisites.html
https://martinfowler.com/bliki/MicroservicePrerequisites.html

