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Abstract – This paper investigates an Extended Kalman Filter (EKF) based Sensor Fusion approach 
for robot tool center point (TCP) position estimation using a sensing unit consisting of multiple sen-
sors. Data from an inertial measurement unit, axis encoders and two new optical sensors for relative 
speed estimation in the context of laser material processing is recorded. Performance of the approach 
is tested experimentally. Three different test trajectories are chosen to evaluate estimation perfor-
mance, including an adaption of ISO 9283 trajectory for robot accuracy. Estimation results are com-
pared to position measurements of a Laser Tracker system with measurement accuracy of +-28µm 
and position estimation of the robot controller of the used Universal Robots UR5e. 
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1. Introduction
Laser manufacturing processes (LMP) can yield high de-

grees of precision and flexibility and hence be used to man-
ufacture complex and individualized products or parts. [1] 
Further, costs of kw laser beam sources decreased by up to 
70%, reducing its share of costs for laser machines drasti-
cally. [2] Through use of low-cost industrial robots (IR) 
overall investment costs can be reduced and LMP could be 
made affordable for new user groups. IRs can be subject to 
different mechanical and thermal sources of error such as 
limited mechanical stiffness of the links or gearbox trans-
mission errors as well as errors rooted in robot control or by 
the manufacturing process causing deviations from the in-
tended process. [3, 10, 13] Effects of path accuracy on LMP 
results can be observed. For example, in robot-based Laser 
Material Deposition (LMD) influence of the path deviations 
on resulting product geometry is visible. Resulting geometry 
deviations of up to 0.24mm are observable for high precision 
IRs such as Kuka KR90 HA. [4] Hence, robot position ac-
curacy must be improved to leverage the potential of robot-
based LMP. To be able to control tool center point position 
(TCP) during laser manufacturing, a precise measurement of 
the deviation of the attained trajectory from the command 
trajectory is necessary at low costs. Therefore, a sensor fu-
sion TCP position estimation approach is investigated in this 
paper.   

2. Experimental Setup
2.1 System Setup

The proposed system makes use of a sensing unit de-
picted in Fig. 1. This sensing unit consists of an inertial 
measurement unit (IMU) and two optical VSCEL sensors 
(OS). Additionally rotary encoders of the industrial robot are 
recorded. The different sensors provide: 

- Acceleration data (IMU)
- Translational velocity (OS),
- Joint position data (UR5e)

The IMU used is a MEMS IMU type MTi-30 of the 
brand Xsens Technologies B.V. The IMU has a spectral 
noise density of 72.5 𝜇𝜇𝜇𝜇/√𝐻𝐻𝐻𝐻. According to the bandwidth 
of the IMU of 375 𝐻𝐻𝐻𝐻 the lower bound for the measurement 
resolution is given with 0.014 𝑚𝑚/𝑠𝑠2 for measured accelera-
tions. Measurements are taken with a frequency of 100 Hz. 
Optical VCSEL sensors used are type Speetec 1D by Sick 
AG. Measurement output is relative distance from initializa-
tion point. Velocity is calculated with according timestamps. 
According to manufacturer, measuring accuracy is 0.1% of 
speed, for a speed range of 0.2m/s-10m/s. Measurements are 
taken at 490 Hz. A working distance of 50mm±5mm must 
be maintained. The robot used is a Universal Robots UR5e 
six-axis IR. Joint position data of the UR5e robot required 
for the experiment are provided via the Real Time Data Ex-
change (RTDE) interface at 500Hz. Also, robot position data 
(RPD) in cartesian space is recorded.  Information on meas-
urement accuracy was not available by the manufacturer. As 
reference position measurement a Laser Tracker (LT) type 
AT930 by Hexagon Metrology GmbH is used to measure the 
actual position of the TCP during experiments. Position 
measurements are recorded with a maximum error of 28µm 
at 490Hz.  

 

Fig. 1 Sensing unit mounted to robot with 
reflector of Laser Tracker system. 
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2.2 Experimental Design 
Position estimation performance is evaluated for three 

different geometries at two constant feed rates. All experi-
ments are executed in the xy-plane of the robot base frame 
(see. Fig 1) with a distance to the metal sheet of 50mm. Ex-
perimental evaluation is done in the same coordinate system. 
All motions start with a run-in route from P0 to P1. First test 
path is an isosceles triangle in which the orthogonal sides 
have a length of 50 mm to investigate performance at abrupt 
directions changes. Second test path is circle with a diameter 
of 100 mm account for more subtle but constant changes in 
direction. 

In Fig. 2 triangular and circular motion are depicted. 

In Fig. 3 an adaption of the ISO 9283 test path is depicted. 
Geometry is developed to create a closed contour in order 
to be used in experiments in which laser processes might be 
applied, e.g. laser cutting.  

To be able to observe the influence of the velocity on the 
estimation results at abrupt direction changes, the triangular 
test path is conducted at two different feedrates. Feedrates 
chosen are v1 = 50 mm/s and v2 = 150 mm/s. Circular and 
iso paths are conducted at v2. All experiments were run six 
times. 

3. Methods
3.1 State Estimation

Sensor fusion uses data from multiple sensors to provide 
more accurate estimate of the system state [5]. This may be 
necessary when individual sensors are not sufficient to fully 
describe the state of a system because they provide limited 
information. Another reason is that sensors provide errone-
ous information, i.e., the readings are noisy or affected by 
other disturbances. The sensors are combined in such a way 
that the respective advantages compensate for the uncertain-
ties as far as possible. For example, some sensors have low 
spatial resolution or measuring frequency. This is often the 
case with absolute measuring systems, such as the global 
navigation satellite system (GNSS) in terms of position de-
termination for some applications. Relative-measurement 
sensors, such as IMUs, are compounded by the fact that they 
provide accurate position data locally and for short periods 
of time, but drift over longer measurement periods [6]. An 
SF can be used to fuse the above sensors and thus minimize 
the measurement uncertainties, as is currently used in auton-
omous driving vehicles [7]. The Extended Kalman Filter is 
a state estimator and represents an extended form of the lin-
ear Kalman Filter (LKF). With this variant of the Kalman 
Filter, non-linear systems can also be estimated. The LKF, 
as well as the EKF, are used in the following as a recursive 
Bayes estimator for systems with a Gaussian distributed sys-
tem model.  The filter is divided into two phases. In the first 
phase of the prediction, the current state is estimated based 
on the result of previous filter step using a system model and 
the input variables of the system. This state is called the a-
priori estimate. In the next step, the correction step, the a 
priori estimate is combined with the measurements and an 
updated state estimate is calculated. This provides the a-pos-
teriori estimate. The basic model of the recursive EKF con-
sists of a system model: 

𝑥𝑥k+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘,𝑤𝑤𝑘𝑘) (1) 

which computes the a priori state vector 𝑥𝑥k+1  at time 
k+1. The variables 𝑥𝑥k, 𝑢𝑢k and  𝑤𝑤k  represent the a posteriori 
estimate of the previous state, the input vector and the noise 
of the process model. The measurement model ℎ(𝑥𝑥𝑘𝑘) maps 
the state vector 𝑥𝑥𝑘𝑘 to the measurement 𝑦𝑦𝑘𝑘. This is assigned 
an additive noise 𝑒𝑒𝑘𝑘. 

𝑦𝑦𝑘𝑘 = ℎ(𝑥𝑥𝑘𝑘) + 𝑒𝑒𝑘𝑘 (2) 

The noise quantities  𝑤𝑤k and 𝑒𝑒𝑘𝑘 are assumed to be mean-
free Gaussian noise. The extension of the EKF in compari-
son to LKF is to linearize the nonlinear functions h and f 
around the current estimate  �̂�𝑥𝑘𝑘 . Here, the matrix F𝑗𝑗  is the 
Jacobian of 𝑓𝑓:  

𝐹𝐹𝐽𝐽 =
∂𝑓𝑓(x, u, w)

∂x
�
�̂�𝑥𝑘𝑘,u

(3) 

Jacobian H of h is calculated analogously. [6] 
The UR5e six axis articulated robot arm of which the 

kinematic chain consists of six rotational joints. The axis an-
gles are stored in the vector:  

q = (q1 ⋯ q6)𝑇𝑇 (4) 

Fig. 3 Adapted ISO 9283 test path. 

Fig. 2 Triangular and circular test paths. 
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Robot state space is then given by: 

x = (q q̇ q̈)𝑇𝑇 ∈ ℝ18 (5) 

The vectors �̇�𝑞  and �̈�𝑞 are the angular velocity and angu-
lar acceleration of the joint axes. Since the reference meas-
urement is in Cartesian space, the axis angles of the state 
vector are converted to a TCP position in Cartesian space via 
the forward kinematic transformation which describes the 
relative position of the axis coordinate systems of the robot 
joints for given joint positions. For this purpose, transfor-
mation matrices are determined with the help of Denavit-
Hartenberg (DH)-parameters. In this classic notation the re-
lations between two sequential robot axis coordinate sys-
tems is given by the distance along and rotation around z-
axis (𝑑𝑑 and 𝜃𝜃) and the x-axis (𝑎𝑎 and 𝛼𝛼) accordingly. By cal-
culation of forward kinematics position of the TCP is calcu-
lated in cartesian space. [8,9] Following DH-parameters 
were read out from the robot-controller of the UR5e robot 
and given in Table 1: 

Table 1 DH-parameters for FK calculation. 
𝜃𝜃 [rad] 𝑎𝑎 [m] 𝑑𝑑 [m] 𝛼𝛼 [rad] 

0 0 0.16235 π/2
0 0.42517 0 0 
0 -0.39239 0 0 
0 0 0.13342 π/2
0 0 0.09955 -π/2
0 0 0.0996 0 

The process model describes the physical behavior of the 
robot. The robot used in the experiments can be described by 
equation 6 using the direct dynamic to describe q̈. 

ẋ = �
q̇
q̈
𝑞𝑞
� = 𝑓𝑓(x, τ, w) = �

�̇�𝑞
𝐷𝐷(q, �̇�𝑞, 𝜏𝜏)

0
� + 𝑤𝑤 

(6) 

Direct dynamics is a method in which the axis accelera-
tions are calculated for a given axis angle, axis speed and 
axis drive torque based on the Lagrange formalism for dy-
namic motion equations. Which leads to:  

�̈�𝑞 =  𝑀𝑀(𝑞𝑞)−1(τ − 𝐶𝐶(𝑞𝑞, q̇)q̇ − 𝐺𝐺(𝑞𝑞) − 𝐹𝐹𝑟𝑟(q̇)) (7) 

This contains a mass matrix 𝑀𝑀(𝑞𝑞) describing the inertial 
forces and moments. Gyroscopic forces lead to the corre-
sponding matrix 𝐶𝐶(𝑞𝑞, q̇) . Frictional influences are consid-
ered by the vector 𝐹𝐹𝑟𝑟(q̇) . These can include, for example, 
static friction and viscous friction. The vector 𝐺𝐺(𝑞𝑞) consid-
ers gravitational influences on the axis segments. The driv-
ing moments of the axes are described by τ. [9] The model 
uncertainties are accounted for by the additive Gaussian 
noise w. This is assumed to be equally distributed for each 
axis, and the noise is given by w where each entry is a 6x1 
vector: 

w = (𝑤𝑤1 𝑤𝑤2 𝑤𝑤3)𝑇𝑇 (8) 

Parameters of the dynamic equation were taken from [11]. 
Third deviation of axis angels, angular jerk Jerk 𝑞𝑞  is as-
sumed to be constant between timesteps. Small changes of 
�̈�𝑞 are modelled by third entry of the additive gaussian noise 
𝑤𝑤3.  

The measurement model h(x) is given by: 

ℎ(𝑥𝑥𝑘𝑘) = �
q
�̇�𝜌
�̈�𝜌
� + 𝑒𝑒𝑘𝑘 ∈ ℝ12 

(9) 

including axis angles q measured by axis encoder, carte-
sian velocity �̇�𝜌 measured by the OS for x- and y-direction 
and cartesian acceleration �̈�𝜌  measured by IMU. As OS do 
not measure z-axis velocity it is modelled by a gaussian 
noise distribution due to planar motions in our experiments. 
Measurement noise 𝑒𝑒𝑘𝑘 was determined by analysis of stand-
still measurements and given in Table 2. 

Table 2 Sensor Noise Values. 
Sensor Noise Values 

𝜎𝜎𝑋𝑋 𝜎𝜎𝑌𝑌 𝜎𝜎𝑍𝑍 
IMU 0.0116105 m/s2 0.0124071 m/s2 0.00990842 m/s2 

𝜎𝜎1 𝜎𝜎2 𝜎𝜎3 
En-
coder 2.3678 ∙ 10−5 rad 2.1291 ∙ 10−5 rad 2.2662 ∙ 10−5 rad

𝜎𝜎4 𝜎𝜎5 𝜎𝜎6 
2.5278 ∙ 10−5 rad 2.2238 ∙ 10−5 rad 2.5379 ∙ 10−5 rad 

OS 𝜎𝜎𝑋𝑋 𝜎𝜎𝑋𝑋 
7 ∙ 10−3𝑚𝑚/𝑠𝑠 7 ∙ 10−3𝑚𝑚/𝑠𝑠 

Covariance matrix of measurement noise given by 

𝑅𝑅𝑘𝑘 =  �
𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 0 0

0 𝑅𝑅𝑂𝑂𝑂𝑂 0
0 0 𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼

� ∈ ℝ12×12 
(10) 

With the diagonal values being 3x3 diagonal matrices us-
ing the sensor noise values.  

3.2 Evaluation Strategy 
To evaluate the performance of the EKF, the measured ref-

erence trajectory of the LT is compared with the calculated 
trajectory of the EKF. Likewise, the RPD of the robot is 
compared with the reference measurement to validate the 
improvement of the position determination of the EKF. To 
evaluate the performance of the approach, three different pa-
rameters are collected. First, the Root-Mean-Square-Error 
(RMSE) between the trajectories is used. This is the aver-
aged squared error between the points of the reference meas-
urement (R) taken from the laser tracker system and the path 
to be evaluated (B) being either the EKF results or the RPD 
values. The standard deviation is determined from the abso-
lute error of the individual points to be able to make a state-
ment about the dispersion of the deviations. As a further 
evaluation parameter, the maximum absolute error (maxAE) 
is calculated. The parameters refer in each case to the coor-
dinates x and y. An overview of the evaluation parameters 
and how they are calculated is given in Table 3.  
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Table 3 Performance Parameters. 

 
Evaluation parameters are averaged over all experimental 

iterations to reduce influence of systematic errors on results. 
 
4. Results 
The evaluation parameters RMSE and maxAE for the tri-

angular path are shown for v2 in Fig. 4. Parameters are 
listed for the EKF and RPD trajectories in x- and y-direc-
tions, respectively. 

 
An axial directional dependency is visible for EKF RMSE 

and maxAE values. Overall, values for EKF paths are 
higher than for RPD paths. In Table 4 standard deviations 
of EKF and RPD paths are depicted.  

 
Table 4 Position error standard deviations for triangular 

paths. 
  𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚 at 50mm/s var 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚 at 150mm/s 
𝑋𝑋𝐸𝐸𝐸𝐸𝐸𝐸 65.74 ∙ 10−3 53.05 ∙ 10−3 
𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅 65.51 ∙ 10−3 52.82 ∙ 10−3 
𝑌𝑌𝐸𝐸𝐸𝐸𝐸𝐸  66.17 ∙ 10−3 53.33 ∙ 10−3 
𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅 65.51 ∙ 10−3 52.82 ∙ 10−3 
 
In Fig. 5 position measurements of EKF, RPD and LT are 

depicted for one recorded motion at v2 and zoomed in at 
the 90° angle of the triangle. Direction of motion is indi-
cated with a red arrow.  

 
 

A displacement of the EKF path to the LT path x-axis di-
rection is observable. Further, no overshoot after the abrupt 
direction change is observed. For v1 similar observations 
were made. To investigate observed x-axis displacement 
closer, RPD, LT and results of the forward kinematic (FK) 
calculation done as part of the EKF estimation are depicted 
in Fig. 6.  

 

 
In this global depiction of position a displacement is visi-

ble for FK positions in contrast to LT and RPD positions. 
To further investigate observed displacement errors relative 
distance measurements of OS are investigated by analyzing 
measured length of hypotenuse of triangular by comparison 
of OS and LT measured length. That way, x- and y- compo-
nent of motion should be visible in individual measure-
ments of optical sensors. Maximum position errors of 
20mm at v2 were observable.  
For circular paths, performance parameters RMSE and 

maxAE are depicted in Fig. 7. 

Parameter Calculation 

RMSE 
�(𝑅𝑅 − 𝐵𝐵)2������������ 

maxAE max
𝑖𝑖

|(𝑅𝑅𝑖𝑖 − 𝐵𝐵𝑖𝑖)| 

Std.-Dev. 

�
1

𝑁𝑁 − 1�
|((𝑅𝑅𝑖𝑖 − 𝐵𝐵𝑖𝑖) − 𝜇𝜇|2

𝐸𝐸

𝑖𝑖=1

 

𝑚𝑚𝑖𝑖𝑚𝑚 𝜇𝜇 = 𝑅𝑅 − 𝐵𝐵�������� 

Fig. 4 RMSE and maxAE for triangular path. 

Fig. 5 Detailed section of triangular motion at v2. 

Fig. 7 RMSE and maxAE for circular path. 

Fig. 6 Position from LT, RPD and FK for 
triangular motion at v2. 
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Axial directional dependency for EKF RMSE and 
maxAE values is observable for circular motions 
as well. RMSE and maxAE is only higher for x-
axis direction, while in y-axis direction values are 
lower than for RPD paths. Standard deviations of 
EKF and RPD positions of circular paths are given 
in Table 5. 
 
Table 5 Position error standard deviation for cir-
cular paths. 
 
 
 
 
 
 
Error standard deviation differs by less then 0.1% 
for circular paths. Evaluation parameters RMSE 
and maxAE are depicted in Fig. 8. 

 
 
 
Axial direction dependency is observable for EKF 

performance parameters. But in contrast to previously 
introduced results, dependency is not similarly distinct 
in RMSE and maxAE. For RMSE x-Axis values are 
higher while they are higher in y-axis direction for 
maxAE. The ISO trajectory generated by the EKF is 
10% more accurate relative to the RMSE. The maxAE 
is also 9% lower. In Table 5 position standard devia-
tions for iso paths are depicted.  

 
Table 6 Position error standard deviation for iso 
paths. 

 
 
 
 

 
In Fig. 9 a detailed ISO path between waypoints 28 

and 31 (see Fig. 4) at v2 is depicted. Positions of LT, 
EKF and RPD are presented. Direction of motion is 
given with a red arrow. 

 
 

 

5. Discussion 
Analysis of the results reveals several key findings. 

Firstly, when considering triangles, higher root mean square 
error (RMSE) and maximum errors were observed. Similarly, 
similar errors were visible in the forward kinematics (FK) 
results indicating that displacement of FK positions has a 
significant influence on the estimation results and suggest-
ing that the error source lies in the FK modeling. Potential 
reasons for these errors could be unknown offsets for axis 
positions or an error-prone implementation of FK when us-
ing the robotics toolbox. 

However, despite these errors, there was a lower differ-
ence in standard deviation between EKF and RPD results for 
iso paths observable, indicating that dispersion of position 
estimations around the estimated path can be on same scale 
or even lower for EKF estimations. This suggests that while 
absolute errors may be high, the shape of the trajectory is 
estimated at a similar level to the RPD. Additionally, when 
examining circular paths, similar results were observed, with 
higher RMSE in the x-direction, which can be attributed to 
the displacements observed in triangular paths. Furthermore, 
the known anisotropic behavior of the IRs could contribute 
to axial-dependent errors if not adequately modeled in the 
process model. 

Measurement errors from the optical sensor were found 
to be relatively high when the motion was not in the meas-
urement direction. However, for motions in one measure-
ment direction with deviations orthogonal to that, the esti-
mation results of EKF were better than RPD, as demon-
strated in Fig. 9. Comparing the ISO trajectory, the errors 
were close to or even lower than the RPD, indicating overall 
lower standard deviation and more stable results. The ad-
vantage of the EKF approach was particularly observable for 
the ISO path in Fig. 9, as it provided better estimation of 
overshoot and resulting dominant oscillations induced by 
dynamic motions such as direction changes. 

 
  

 Std.−Dev. 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚 at 150mm/s 
𝑋𝑋𝐸𝐸𝐸𝐸𝐸𝐸 794.56 ∙ 10−3 
𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅 794.37 ∙ 10−3 
𝑌𝑌𝐸𝐸𝐸𝐸𝐸𝐸  794.67 ∙ 10−3 
𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅 794.37 ∙ 10−3 

 Std.−Dev. 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚 at 150mm/s 
𝑋𝑋𝐸𝐸𝐸𝐸𝐸𝐸 54.17 ∙ 10−3 
𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅 54.89 ∙ 10−3 
𝑌𝑌𝐸𝐸𝐸𝐸𝐸𝐸  53.94 ∙ 10−3 
𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅 54.89 ∙ 10−3 

Fig. 9 Detailed section ISO motion between waypoints 28 
and 31 at v2. 

Fig. 8 RMSE and maxAE for ISO path. 
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7. Conclusion
In conclusion, the sensor fusion approach did not signif-

icantly increase position estimation accuracy in a relevant 
order of magnitude. This outcome can be attributed to two 
major reasons that have been identified. Firstly, the high in-
fluence of forward kinematic errors need for their correction 
in future approaches to fully analyze performance of the SF 
approach and impact of FK calculations on performance. It 
is crucial to explore and compare alternative implementa-
tions of FK to determine the most effective approach. How-
ever, it is worth noting that when the motion is solely in the 
measurement direction of a one-dimensional sensor, the re-
sults demonstrate potential for improved position estimation 
capability compared to RPD. Used optical sensors did create 
high errors when motion was not solely in direction of meas-
urement. To fully exploit this potential across a variety of 
motions, it is necessary to test and incorporate other sensors 
for relative tool speed measurements into the concept. Prom-
ising results for tool speed measurement have been observed 
with speckle-based sensors [12]. Nevertheless, the potential 
for improvement is visible, particularly for the ISO trajec-
tory, as the estimated overshoot and resulting oscillation 
were better estimated with the EKF than with the RPD. By 
employing alternative sensors and adopting a different for-
ward kinematic (FK) modeling approach, it is plausible to 
achieve better results in future studies. Further research is 
warranted to explore the integration of new tool speed sen-
sors and refine the FK modeling. This would enable a com-
prehensive investigation of their impact on the overall per-
formance of the sensor fusion approach. 
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