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For prototype design and small batch production, laser forming has more advantages for manu-
facturing metal sheet products than conventional processes. However, predicting and optimizing the 
required conditions for the product's final shape is difficult, especially in multi-stage forming, where 
many governing factors affect the shape intricately. In this study, the convolution neural network 
(CNN) is proposed to simulate the correlations between the scanning paths and the final deformations 
of a metal sheet. The imaginary data, which used values to present the distribution of deformation 
height of metal sheets, was used to examine the feasibility of applying CNN. On the other hand, the 
simulated images of a structured pattern projected on the sheet surface were used to train and test the 
CNN. The results demonstrate that CNN can use imaginary data in the training dataset to predict the 
scanning path determined by two points on the edge of the metal sheet with high accuracy. Although 
the performance of the test dataset needed to be better to prove the general-purpose ability, this re-
search validates the feasibility of applying CNN for scanning path prediction in laser forming.  

Keywords: laser forming, convolution neural network, scanning path prediction, structured pattern, 
machine learning 

1. Introduction
Laser forming is a process using thermal stress to deform

a metal sheet without expensive dies and models. Due to the 
high flexibility and faster process [1-4], custom-made pro-
duction, prototyping, and reshaping of formed products are 
fields where laser forming has the advantage.  

With the extensive investigation of laser forming, many 
researchers have studied the relationship between defor-
mation and process conditions [5-8]. Difficulty in control-
ling the process is attributed to that many governing factors 
change during the process. For example, repeatedly bending 
metal plates using laser forming increases the anisotropy of 
bending and accumulates the work hardening during consec-
utive stages. Furthermore, laser irradiation also causes ther-
mal influences such as changes in metallographic structures, 
hardness, and absorptivity of the laser beam. 

Machine Learning (ML) is a computer algorithm that ex-
tracts valuable knowledge called features from teaching data 
and effectively improves machining manufacturing [9-11]. 
A mathematical model builds in the ML algorithm based on 
sample data, known as "training data," to make predictions 
or decisions. And then, "test data" is used to prove that the 
accuracy and robustness of the model are suitable for the ap-
plication. In recent years, ML has been frequently used to 
solve problems that only can be solved with a lot of experi-
ence or data.  

In many ML methods, CNN can extract valuable features 
from images or matrices and be applied to classification or 
regression work. Based on the convenience of using images 
to predict and the powerful convolution ability to extract the 
features, CNN has been applied to many types of research in 

mechanical engineering field. For example, Xuefeng et al. 
used CNN to develop a detection system that automatically 
recognizes tool wear types and obtains the flank wear width 
in the face milling process. It can collect the wear images of 
all the inserts of a face milling cutter during the machining 
gap, and no downtime for measurement [12]. Guo et al. pro-
posed a novel hierarchical learning rate adaptive deep con-
volution neural network based on an improved algorithm, 
and applied it to diagnose the bearing faults and to identify 
both size and severity of faults in a bearing [13]. The results 
of experiments with bearing data demonstrated the superior-
ity of the proposed ADCNN model to other fault-diagnosis 
methods, such as traditional deep CNN. Rifai et al. com-
pared 5 kinds of loss functions for the convolutional neural 
network proposed to evaluate the surface roughness from the 
image of machined surface [14]. The average error of sur-
face roughness prediction using CNN was verified to be 
within 10% of the actual measured surface roughness. At the 
same time, the computational time for estimation is within 
the desired range. 

Thus, ML methods excel at recognizing patterns and ex-
tracting meaningful information from the amount of teach-
ing data. The authors also applied a back propagation neural 
network (BPNN) to identify the condition of grinding wheel 
surface [15]. The grinding sound was recorded and used for 
training, and then appropriate dressing interval was esti-
mated for Resinoid-bonded cubic boron nitride wheels. In 
addition, the corner wear of drill bit was predicted by learned 
model using BPNN, too [16]. Specially defined static and 
dynamic features were extracted from different frequency 
bands in frequency spectra of forces. Besides, ML 
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algorithms can effectively model complex nonlinear rela-
tionships between input and output variables, allowing for 
more accurate predictions and efficient strategies. Therefore, 
the authors also applied the neural network for forward pre-
diction, where the metal sheet deformation was predicted 
from the process parameters in laser forming [16]. The for-
ward prediction acts as a laser forming simulator giving the 
foresight of effects by process parameters and preventing 
possible problems. 
 This paper reported the results when the CNN method 
is applied to predicting laser scanning passes in multi-stage 
laser forming processing. The input and output data were 
the deformation change of a metal sheet after the pro-
cessing and the sequential laser scanning pass during the 
processing, respectively. The pass has a significant impact 
on the processing results. 

ML encompasses supervised, unsupervised, and semi-
supervised learning, distinguishing whether the data has cor-
responding labels. The deformation data of this research is 
obtained through laser scanning paths or simulations. How-
ever, this study used deformation data for backward predic-
tion for the scanning path. Therefore, each deformation data 
is labeled with its corresponding path. Consequently, this re-
search opts for supervised learning. 
2. Method

This research used the metal sheet's shape as teaching
data to predict the laser scanning path. However, the plate 
shape measuring to collect the deformational distribution 
takes too much time, generally. Therefore, in the present pa-
per, 'Imaginary data' deductively expected distributions of 
deformation within metal sheets were used for each given 
irradiating conditions of laser [17]. Specifically, the imagi-
nary data was deduced by the superposition of plate bending 

consecutively generated in forming stages with the particu-
lar values of average laser power, scanning speed, and spot 
diameter shown in Table 1. Thus, this simulation assumes 
that the bending angle 𝜃𝜃 = 4° is determined without influ-
ences of the gradual change in plate rigidity by previous 
stages. Using simulated data is expected to give enough plate 
shape diversity to acquire high versatility in path prediction. 
The feasibility of applying CNN was examined through the 
training with imaginary data and the verification of predicted 
paths for target shapes.

2.1 Collecting data on laser forming 
 For simplification in the feasibility study, forming 

stages are limited to 4, and the laser conditions are shown in 
Table 1. Scanning paths are randomly chosen to acquire 
general predictability for various shapes caused by 
superposing consecutive bending along those paths. In 
addition, the laser beam is scanned 4 times (= 2 reciprocating 
on a path) at a single stage of forming to obtain adequately 
large deformation. 

As shown in Fig. 1 (a), two endpoints were randomly 
chosen from discrete 16 candidate points to consider as each 
straight scanning path. Those candidates were arranged with 
even spacing of 20 mm on each edge, and two endpoints had 
not to be chosen on the same edge to avoid making the path 
overlaid the edge. In addition, lines interfering with the 
fixing bolt were also excluded. For example, solid lines <1-
6> and <3-14> are the correct paths, while broken line <2-
10> is not chosen because of the interference with the fixing
bolt, as shown in Fig. 1 (b).

Table 1 Process conditions. 

Laser forming parameter 
Number of stages 4 
Number of scans per stages 4 
Bending angle per stage [°] 4 

Workpiece 
Material JIS SS400 
Size [mm] 100 × 100 × 1.5 

Diode laser 
Average power [W] 220.9±1.5 
Scan speed [mm/min] 800 
Spot diameter d [mm] 1.7 

(a) Simulated multiple scanning paths

(b) Experimental apparatus on NC table

Fig. 1 Experimental procedure in laser forming tests. 
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In the laser forming experiment, a laser distance meter 
was used to sample the surface of the workpiece and then get 
the height of each sampling point after each forming stage 
by simple calculation. Therefore, the simulation also built 
enough imaginary height distribution data, like Fig. 4 (a), to 
train the machine learning model [17]. Additionally, CNNs 
excel at extracting features from images. This study aims to 
introduce a novel optical data collection method by directly 
capturing images of the workpiece or projecting particular 
patterns onto the workpiece surface and inputting them to 
the CNN for feature extraction to predict the laser scanning 
path. This research tried to validate the feasibility of path 
prediction using imaginary images with particular patterns 
at first. The imaginary images with particular patterns will 
be introduced in Chapter 2.3. 

Regularly repeated geometric patterns enable the detec-
tion of distortion of a surface on which the patterns are pro-
jected. In three-dimensional measurement, using fringe pro-
jection techniques for generating surface information is one 
of the most active research areas in optical metrology [18-
20]. Most of these methods use sinusoidal fringe patterns, 
and phase analysis is conducted to obtain the surface infor-
mation of the target, including the human face, apple, and 
any 3-D diffuse objects. However, this research proposed an 
idea that applied the binary fringe pattern in different direc-
tions, as shown in Fig. 2(a), and used the projected patterns 
of the metal surface through CNN to predict irradiation con-
ditions. In contrast to the reference paper, this study em-
ployed binary fringe patterns instead of sinusoidal ones, and 
the phase analysis was not considered to obtain surface de-
formation. This research tried to apply CNN to extract the 
features of bending lines on the workpiece surface and pre-
dict the scanning path. In order to ensure omnidirectionality 
in scanning path prediction, designed patterns had varying 

orientations. To avoid situations where the fringe patterns do 
not deviate when parallel with the scanning path, potentially 
affecting the CNN from extracting helpful features in that 
region. Figure. 2(b) shows the patterns projected onto the 
metal plates bent during laser forming tests. However, cap-
turing many of these images presents challenges due to two 
disturbance influences. Firstly, the clarity of the fringe pat-
terns on the workpiece's surface is susceptible to variations 
in lighting conditions, including both the projector's light 
source and ambient lighting. Maintaining consistent illumi-
nation is crucial to ensure the quality of captured images. 
Secondly, the relative positions of the workpiece and the 
camera cannot be perfectly fixed between each machining 
operation and image capture step. This variability compli-
cates following data processing steps, requiring careful cal-
ibration and registration procedures to reduce these posi-
tional variations. 

Nevertheless, the present study aims to demonstrate the 
efficacy of proposed path prediction method using CNN. 
Therefore, the authors considered that inputting those cap-
tured photos directly to the CNN should be continuously in-
vestigated in our future study, rather than included prema-
turely in the present study. Instead, imaginary data of the 
projected patterns was simulated on the assumption that in-
fluences of any disturbance were removed. 

2.2 Convolution neural network and datasets  
In order to predict laser scanning paths from the sheet 

shape, machine learning was conducted using a CNN shown 
in Fig. 3. Structure of the CNN contains two parts: convolu-
tional layers for extraction of features from the input, and 
fully connected layers for extraction of features in shapes of 
calculating the prediction by imitating the nonlinear function. 

Training and testing of the CNN are conducted with 
teaching datasets consisting of the matrix data for input and 
the labels for output. 1000 datasets were prepared in this 
study, 80% were used for training CNN, and the rest were 
for testing. These data were obtained by deductive reasoning 
so that they could be obtained in a shorter time than the ex-
periment and exclude disturbance influences. 

Tables 2 to 7 list all the convolution neural network 
structures. These listed networks have not been fully opti-
mized, and the author believes there is still room for adjust-
ment in each network. Each training for the CNN involves 

   
 (a) Designed patterns  (b) Examples of projected 

pattern 
Fig. 2 Four different structured patterns used. 

 
Fig. 3 Structure of convolution neural network used. 

< 4 – 6 >           < 1 – 16 >  < 12 – 14 >       < 12 – 13 > 

 
1st → 2nd → 3rd → 4th 

(a) Gray images presenting height distribution  

 
1st → 2nd → 3rd → 4th 
(b) Vertical fringes converted from upper gray images 
Fig. 4Transition on plate shape during four stages. 
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loading data and training the network for 1-4 forming stages, 
which consumes a substantial amount of time. While not op-
timal, the results obtained in this experiment are generated 
through training with the respective network architectures. 
The training parameters not explicitly listed are all default 
ones of TensorFlow. All training used the Adam optimizer in 
this study. 

 
2.3 Input data for CNN  

As mentioned in Section 2.1, the imaginary data contains: 
1. Height distribution data is used to simulate the data col-
lected by the laser distance meter. 

 
 

 

Table 2 CNN structure of Height distribution input, input data scheme A, and binary encoding method. 

 

 

First stage 

 

Second stage 

 

Third stage 

 

Fourth stage 

Input 400 × 400 × 1 ← ← ← 
Conv2D 
+ ReLu 

( 5 × 5 ) 
396 × 396 × 8 

( 3 × 3 ) 
398 × 398 × 8 ← ← 

MaxPool 198 ×198 × 8 199 ×199 × 8 ← ← 
Con2D 
+ ReLu  

( 3 × 3 ) 
197 × 197 × 8 

( 3 × 3 ) 
197 × 197 × 16 ← 

MaxPool 98 × 98 × 8 98 × 98 × 16 ← 
Con2D 
+ ReLu  

( 3 × 3 ) 
96 × 96 × 8 

( 3 × 3 ) 
96 × 96 × 32 ← 

MaxPool 48 × 48 × 8 48 × 48 × 32 ← 
Con2D  
+ ReLu  ( 3 × 3 ) 

46 × 46 × 8 
( 3 × 3 ) 

46 × 46 × 32 ← 

Flatten 313632 33856 67712 ← 
Dense + ReLu 32 1280 ← ← 
Dense + ReLu  320 ← 640 

Sigmoid 16 32 48 64 
 

 

Table 3 CNN structure of Height distribution input, input data scheme A, and Cartesian encoding. 

 

 

First stage 

 

Second stage 

 

Third stage 

 

Fourth stage 

Input 400 × 400 × 1 ← ← ← 
Con2D  
+ ReLu 

( 3 × 3 ) 
398 × 398 × 4 

( 5 × 5 ) 
396 × 396 × 8 

( 5 × 5 ) 
396 × 396 × 4 

( 5 × 5 ) 
396 × 396 × 8 

MaxPool 199 ×199 × 4 198 ×198 × 8 198 ×198 × 4 198 ×198 × 8 
Con2D 
+ ReLu 

( 3 × 3 ) 
197 × 197 × 8 

( 5 × 5 ) 
194 × 194 × 8 ← ( 5 × 5 ) 

194 × 194 × 16 
MaxPool 98 ×98 × 8 97 × 97 × 8 ← 97 × 97 × 16 
Con2D 
+ ReLu  ( 5 × 5 ) 

93 × 93 × 8 
( 5 × 5 ) 

93 × 93 × 16 
( 5 × 5 ) 

93 × 93 × 64 
MaxPool  46 × 46 × 8 46 × 46 × 16 46 × 46 × 64 
Con2D 
 + ReLu    42 × 42 × 64 

Flatten 36864 16928 33856 112896 
Dense + ReLu 128 2000 ← ← 
Dense + ReLu 64 2000 320 ← 

Dropout   50% ← 
Sigmoid 4 8 12 16 
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2. Fringe image data is used to simulate data of specific pat-
terns projected onto the workpiece surface. 
  Figure 4(a) gives height distributions visualized by 
grayscale images converted from the vertical deformation. 
The grayscale image enables easy observation of the change 
in sheet shape through forming stages. Figure 4(b) shows 
another type of input data for CNN: imaginary photo images 
simulated as if the pattern is projected with an incident angle 

of 45°. Each image corresponds to the height distribution in 
Fig. 4(a).  
  Because the bending angle in laser forming is small, 
multi-stage forming is required to obtain complex shapes or 
to draw deeply. Target shapes at each stage are provided by 
process-design work, and the difference between two con-
secutive shapes is that the deformation ought to be gained at 
each stage. This study also tried different sizes of input data 
and investigated the influences of that. Table 8 shows two 

 

Table 4 CNN structure of Height distribution input, input data scheme B, and binary encoding. 

 

 

First stage 

 

Second stage 

 

Third stage 

 

Fourth stage 

Input 400 × 400 × 1 400 × 400 × 2 400 × 400 × 3 400 × 400 × 4 
Con2D 
+ ReLu 

( 5 × 5 ) 
396 × 396 × 8 ← ( 5 × 5 ) 

396 × 396 × 4 ← 

MaxPool 198 ×198 × 8 ← 198 ×198 × 4 ← 
Con2D 
+ ReLu 

 
 

( 5 × 5 ) 
194 × 194 × 8 

← ← 

MaxPool 97 × 97 × 8 ← ← 
Con2D 
+ ReLu 

( 5 × 5 ) 
93 × 93 × 8 

( 5 × 5 ) 
93 × 93 × 16 

← 

MaxPool  46 × 46 × 8 46 × 46 × 16 ← 
Flatten 313632 16928 33856 ← 

Dense + ReLu 32 2000 ← ← 
Dropout 

 
 

 
 

 50% 
Dense + ReLu 320 ← 

Dropout  50% 
Sigmoid 16 32 48 64 

 

Table 5 CNN structure of Height distribution input, input data scheme B, and Cartesian encoding. 

 

 

First stage 

 

Second stage 

 

Third stage 

 

Fourth stage 

Input 400 × 400 × 1 400 × 400 × 2 400 × 400 × 3 400 × 400 × 4 
Con2D 
+ ReLu 

( 3 × 3 ) 
398 × 398 × 4 

( 5 × 5 ) 
396 × 396 × 8 

← ( 5 × 5 ) 
396 × 396 × 4 

MaxPool 199 ×199 × 4 198 ×198 × 8 ← 198 ×198 × 4 
Con2D 
+ ReLu 

( 3 × 3 ) 
197 × 197 × 8 

( 5 × 5 ) 
194 × 194 × 8 

← ← 

MaxPool 98 ×98 × 8 97 × 97 × 8 ← ← 
Con2D 
+ ReLu  ( 5 × 5 ) 

93 × 93 × 8 
← ( 5 × 5 ) 

93 × 93 × 16 
MaxPool  46 × 46 × 8 ← 46 × 46 × 16 
Flatten 36864 16928 ← 33856 

Dense + ReLu 320 2000 ← ← 
Dropout   50% ← 

Dense + ReLu 64 2000   
Sigmoid 4 8 12 16 
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schemes to prepare the data. In Scheme A, only the present 
target shape, meaning the formed workpiece shape, was 
given in the data for any number of stages. For example, for 
the path prediction during 3-stage forming, paths in all 
stages were predicted from the shape just after the third stage, 
as shown on the left side of Table 9. As indicated in Table 8,  
the dimension of input data arrays was the same regardless 
of the number of stages. So, the CNN is expected to use less 
model memory footprint in training progress. 

  On the other hand, in Scheme B, the input data included 
all target shapes, which are consecutively obtained at each 
stage. For example, target shapes at the first, second, and 
third stages were used to predict scanning paths during 3-
stage forming, as shown on the right side of Table 9. As in-
dicated in Table 8, the dimension of input data arrays in-
creased proportionally to the number of stages. High predic-
tion accuracy and adaptability for complex shapes are ex-
pected because the shape change of each stage is included in 

 

Table 6 CNN structure of fringe image input, input data scheme B, and binary encoding. 

 

 

First stage 

 

Second stage 

 

Third stage 

 

Fourth stage 

Input 400 × 400 × 1 400 × 400 × 2 400 × 400 × 3 400 × 400 × 4 
Con2D 
+ ReLu 

( 5 × 5 ) 
396 × 396 × 8 

← ( 5 × 5 ) 
396 × 396 × 4 

← 

MaxPool 198 ×198 × 8 ← 198 ×198 × 4 ← 
Con2D 
+ ReLu  ( 5 × 5 ) 

194 × 194 × 8 
← ← 

MaxPool  97 × 97 × 8 ← ← 
Con2D 
+ ReLu  ( 5 × 5 ) 

93 × 93 × 8 
( 5 × 5 ) 

93 × 93 × 16 
← 

MaxPool  46 × 46 × 8 46 × 46 × 16 ← 
Flatten 313632 16928 33856 ← 

Dense + ReLu 128 2000 ← ← 
Dropout   50% ← 

Dense + ReLu  2000 320 ← 
Dropout   50% ← 
Sigmoid 16 32 48 64 

 
 

Table 7 CNN structure of fringe image input, input data scheme B, and Cartesian encoding. 

 

 

First stage 

 

Second stage 

 

Third stage 

 

Fourth stage 

Input 400 × 400 × 1 400 × 400 × 2 400 × 400 × 3 400 × 400 × 4 
Con2D 
+ ReLu 

( 5 × 5 ) 
396 × 396 × 4 

← ( 5 × 5 ) 
396 × 396 × 8 

( 5 × 5 ) 
396 × 396 × 4 

MaxPool 198 ×198 × 4 ← 198 ×198 × 8 198 ×198 × 4 
Con2D 
+ ReLu 

( 5 × 5 ) 
194 × 194 × 8 

← ← ← 

MaxPool 97 × 97 × 8 ← ← ← 
Con2D 
+ ReLu 

( 5 × 5 ) 
93 × 93 × 16 

← ( 5 × 5 ) 
93 × 93 × 8 

( 5 × 5 ) 
93 × 93 × 16 

MaxPool 46 × 46 × 16 ← 46 × 46 × 8 46 × 46 × 16 
Flatten 33856 ← 16928 33856 

Dense + ReLu 640 ← 2000 ← 
Dropout   50%  

Dense + ReLu 64 ←  320 
Dropout    50% 
Sigmoid 4 8 12 16 
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the input data. Due to space constraints, complete explana-
tory diagrams for all stages 1-4 are not provided here. There-
fore, only schematic representations for stages 2 and 3 are 
presented. 
 
2.4 Output data for CNN 

The output data for CNN was a vector (an array of vari-
ables) to which the laser scanning path positions were en-
coded. For encoding these paths, two methods were em-
ployed, and their prediction performance was compared. 
Firstly, as the ‘binary encoding method,’ a 16-digit binary 
number was made by putting a flag on two digits corre-
sponding to two endpoints of the scanning path. For example, 
to present path <1-6>, the values in index 1 and 6 of the array 
were 1, and the others were set as 0 (Fig. 5(a)). Therefore, 
the encoded data represents a distribution of certainty in the 

classification problem. The sigmoid function was used as the 
activation function from fully connected layer to output 
layer, and a BCE (binary cross entropy) was employed as the 
loss function. The following equation gives the BCE for the 
binary encoding, which calculates the difference, 𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵  , b 
tween a correct path and a predicted path. 

 

𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵 =
1
𝑁𝑁d

�𝑙𝑙𝐵𝐵𝐵𝐵𝐵𝐵

𝑁𝑁d

 

=
1
𝑁𝑁d

−1
𝑁𝑁o

��{𝑦𝑦𝑖𝑖 ln(𝑦𝑦�𝑖𝑖) + (1− 𝑦𝑦𝑖𝑖) ln (1 − 𝑦𝑦�𝑖𝑖)}
𝑁𝑁o

𝑖𝑖

𝑁𝑁d

, 
(1) 

 

Table 8 Input data given for CNN. 
Scheme A: Target shape at present stage is used as input for CNN 

Number of stages n 1 2 3 4 

Input data 

 
1st shape 

 
2nd shape 

 
3rd shape 

 
4th shape 

Dimension of data 400×400×1 400×400×1 400×400×1 400×400×1 
 

Scheme B: Target shapes before present stage are used as input for CNN 
Number of stages n 1 2 3 4 

Input data 

 
1st shape 

 
1st - 2nd shape 

 
1st - 3rd shape 

 
1st - 4th shape 

Dimension of data 400×400×1 400×400×2 400×400×3 400×400×4 
 
 
 Table 9 Different training conditions in 2nd and 3rd forming stage. 

Scheme A B 
Forming stage Second Third Second Third 

Input 

    

Output Two scanning paths Three scanning paths Two scanning paths Three scanning paths 
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where the size of the output label is No=16n (n: the number 
of stages), Nd is the number of datasets, 𝑦𝑦𝑖𝑖 is the correct path 
in the teaching data, and 𝑦𝑦�𝑖𝑖 is the path predicted by CNN. 

Secondly, as ‘Cartesian encoding method’, the output was 
values of Cartesian coordinates x and y for each of the two 
endpoints of the path. In addition, normalization was 
employed for the coordinates values to avoid loss diverges 
in training progress. For example, to present path <1-6>, the 
normalized value in output (0.2, 1.0, 1.0, 0.6) was converted 
from the actual coordinates (-30, 50, 50, 10), as shown in Fig. 
5(b). Therefore, the encoded coordinates are similar to the 
dependent variable in the regression problem. The Sigmoid 
function was used as the activation function from fully con-
nected layer to output layer, and a GD (geometric distance) 
defined in equation (2) was employed as the loss function. 
The loss function was a mean geometric distance between a 
correct and predicted path, 𝐿𝐿𝐺𝐺𝐺𝐺. In this study, it was defined 
as the mean value of length from the endpoint of the correct 
path to the endpoint of a corresponding predicted path. 

where n is the number of stages, and S and G represent the 
endpoint of a path as shown in Fig. 6, and subscripts ‘cor’ 
and ‘pred’ represent correct and predicted path, respectively. 

3. Results and Discussions 
This research applied different methods to examine the 

feasibility of CNN, including two encoding methods and dif-
ferent sizes of input data. As shown in Table 10, the height 
distribution of metal sheet and imaginary fringe image were 
two kinds of input types of CNN. The label of the output of 
CNN was given by two encoding methods: binary encoding 
and Cartesian encoding. CNN was employed as a machine 
learning tool for analyzing different sizes of input data as 
shown in Table 8. These results are introduced in the follow-
ing sections. 
3.1 Prediction results by means of height distribution 

Figure 7 shows the transition of loss function as training 
by scheme A for the path prediction in multi-stage (n up to 
4). The input data was height distributions with a size of 
(400×400×1), and the scanning paths were encoded with the 
binary encoding method. The loss function for binary encod-
ing, the binary cross entropy LBCE decreased and converged 
to a small value for the training datasets. It should be noted 
that the training was completed for a very short period com-
pared to the previous study [17]. The same dataset was used 
to train CNN and a fully connected network with the binary 
encoding method. Figure 9 shows the training loss trend of 
the first forming stage. It can be observed that the number of 
epochs and training time required for CNN is significantly 
lower than that of fully connected network. Nevertheless, the 
binary cross entropy LBCE converged only in single stage 
forming for the test datasets, while it diverged in multi-stage 
forming. 

For considering the influences of input data preparation 
procedure, Fig. 8 shows the transition of binary cross en-
tropy LBCE as training by scheme B where the size of input 
data was (400×400×n). There was no significant difference 
for training datasets when comparing Figs 7(a) and 8(a). In 
contrast, comparing Figs 7(b) and 8(b), the binary cross en-
tropy LBCE was obviously improved by scheme B, while it 
was still large values for larger forming stages. This suggests 
that scheme B acquired higher versatility than scheme A. 
The detailed loss trends of each stage are shown in Figs 18 
to 21 on the final page. 

𝐿𝐿𝐺𝐺𝐺𝐺 =
1
𝑁𝑁d

�𝑙𝑙𝐺𝐺𝐺𝐺

𝑁𝑁d

 

=
1
𝑁𝑁d

��( SpredScor�����������+ GpredGcor�����������)
𝑛𝑛𝑁𝑁d

, 
(2) 

 

 

(a)Binary encoding  (b) Cartesian encoding 
Fig. 5 Two encoding methods of scanning path.  

 

 
Fig. 6 End points of laser scanning paths chosen and predicted. 

 

Table 10 Different conditions of network training. 
Input Network Output 

Height  
distribution Convolution 

neuronal net-
work 

Binary  
encoding 

Imaginary  
fringe image 

Cartesian  
encoding 

 

  

(a) For training datasets (b) For test datasets 
Fig. 7 Trends of binary cross entropy LBCE 

in training process by scheme A. 
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 The performance of prediction using the completely 
trained CNN is presented in Fig. 10. Figure 10(a) contains 
the bar charts illustrating distributions of the endpoints of 
correct laser scanning paths against the ones of paths 
predicted by the trained CNN shown in Fig. 7. On the other 
hand, charts in Fig. 10(b) were obtained using the CNN 
trained as shown in Fig. 8. In all bar charts, two axes on the 
bottom represent the candidate points chosen as endpoints of 
the correct and predicted paths. Each tile on the bottom 
corresponds to a combination of the correct and predicted 
endpoints. At the same time, the height of the bar graph 
indicates the frequency of the corresponding endpoint. 
Therefore, if the prediction coincides with the correct data, 
tall bars stand on a diagonal of the square bottom. On the 

contrary, difficulty in the path prediction is presented as 
dispersion of the frequency distribution. Because 80% of the 
whole datasets were used for training, the number of candi-
date points was 800×2×n, where two endpoints in each scan-
ning path, and n is the number of stages. Therefore, the up-
per limit of the scale vertical axis increases with the number 
of stages, but the frequency distribution can be compared 
between those charts. 

As shown in all charts of Figs. 10(a) and 10(b), the pre-
diction exhibited high accuracy, but scheme B seems slightly 
better than scheme A. Based on this finding, it is believed 
that scheme B, which contains the target shape of each stage, 
helps to predict the sequence of scanning paths and is more 
accurate. For a detailed comparison, Fig. 10 also includes a 

Number of 
stages n 1 2 3 4 

(a
) S

ch
em

e 
A

 

    

Correct pre-
diction rate 

Correct predicted
whole predicted

=100 % 87.32 % 83.54 % 83.23 % 

     

(b
) S

ch
em

e 
B 

    

Correct pre-
diction rate 

Correct predicted
whole predicted

=100 % 100 % 100 % 100 % 

Fig. 10 Frequency distribution of predicted endpoints against ones for training datasets (in binary encoding, epoch for training<=100). 

 

  

 
(a) For training datasets (b) For test datasets  

Fig. 8 Trends of binary cross entropy LBCE 
in training process by scheme B. 

Fig. 9 Trends of binary cross entropy LBCE  
of two different neural networks. 
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correct prediction rate (=correctly predicted paths / whole 
predicted paths). As can be seen, it is obvious that scheme B 
achieved higher prediction accuracy. 

Test datasets are used to evaluate and assess the model's 
performance and versatility. Figure 11 shows the 
performance of prediction obtained by test datasets. The 
number of candidate points is 200×2×n, where the test 
datasets number is 200 and n is the number of stages. 
Scheme A had a high dispersion of prediction for the multi-
forming stages in Fig. 11(a), but scheme B maintained its 
impressive performance in Fig. 11(b). According to these 
results, effective and reliable path prediction was achievable 
in the initial two forming stages, as the input data contained 
target shapes at each stage. However, it is noteworthy that in 
the third and fourth forming stages, as illustrated in Fig.  

11(b), overfitting issues were observed, indicating the need 
for resolution. This result suggests that further optimization 
and addressing overfitting challenges are essential for 
extending the effectiveness of path prediction across all 
forming stages. 

Figures 12(a) and 12(b) show the transition of loss func-
tion for results using the input data prepared by schemes A 
and B, respectively. The laser scanning paths were encoded 
by the Cartesian method. Geometrical distance has a length 
dimension, and the value can be easily compared with other 
quantities. In both Fig. 12(a) and 12(b), it is confirmed that 
the loss functions converged for tens of epochs in the train-
ing process. In the transition of LGD for test datasets, though 
the divergence was not observed, the distance values were 
still large, especially in higher stages. This result means the 

Number of 
stages n 1 2 3 4 

(a
) S

ch
em

e 
A

 

    

Correct pre-
diction rate 

Correct predicted
whole predicted

=100 % 51.38 % 30.08 % 25.31 % 

     

(b
) S

ch
em

e 
B 

3

    

Correct pre-
diction rate 

Correct predicted
whole predicted

=100 % 96.25 % 75.25 % 46.69 % 

Fig. 11 Frequency distribution of predicted endpoints against ones in test datasets (in binary encoding, epoch for training <= 100). 

Training datasets Test datasets  Training datasets Test datasets 

  

 

  
(a) Scheme A  (b) Scheme B 

Fig. 12 Trend of mean geometrical distance LGD in training process with paths encoded by Cartesian. 
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CNN model has an overfitting problem in the test dataset. 
Thus, a highly effective ML procedure would be required for 
high prediction accuracy, including regularization and drop-
out methods. 

Figures 13(a) and 13(b) give the loss of prediction by the 
CNN trained using Cartesian encoded data. Blue dots repre-
sent the individual geometrical distance lGD calculated for 
each dataset, and red lines represent the averaged distance 
for all datasets. A small distance means that the error be-
tween the correct and predicted path was small. In Fig. 13(a), 
the prediction results using input data prepared by the 
scheme A shows that the prediction error was accumulated, 

and the averaged distance became larger as the number of 
laser forming stages n increased. The same trend is found in 
Fig. 13(b), but scheme B resulted in lower prediction errors. 
The variance of the individual geometrical distance lGD also 
exhibited same trend; it increased with the number of laser 
forming stage n, and scheme B resulted in smaller prediction 
errors. 

Figure 14 shows the predicted results obtained for test 
datasets. The number of test datasets is 200. The mean geo-
metrical distance LGD was larger than the training's result in 
both schemes, which presents the overfitting problem, simi-
lar to the loss trend shown in Fig. 12. Compared to the result 

 
Table 11 Mean geometrical distance LGD in different training conditions for height distribution.     (unit: mm) 

  Training datasets 

 

Test datasets 

Encoding 
for paths 

Input 
data size 

Stage 
n = 1 

Stage 
n = 2 

Stage 
n = 3 

Stage 
n = 4 

Stage 
n = 1 

Stage 
n = 2 

Stage 
n = 3 

Stage 
n = 4 

Binary 
encoding 

Scheme A 0.0 17.4 22.0 25.6 0.0 135.0 273.9 394.5 

Scheme B 0.0 0.0 0.0 0.0 0.0 14.0 138.3 221.8 

Cartesian 
encoding 

Scheme A 3.9 27.3 37.0 54.9 2.8 66.6 262.8 374.4 

Scheme B 3.9 10.6 18.9 28.8 2.8 16.0 55.4 142.6 

 

Number of 
stages n (a) Scheme A (b) Scheme B 

1 

 
Mean LGD = 3.9 mm, Variance in lGD = 43 mm2 

 
Mean LGD = 3.9 mm, Variance in lGD = 43 mm2 

2 

 
Mean LGD = 27.3 mm, Variance in lGD = 829 mm2 

 
Mean LGD = 10.6 mm, Variance in lGD = 38 mm2 

3 

 
Mean LGD = 37.0 mm, Variance in lGD = 815 mm2 

 
Mean LGD = 18.9 mm, Variance in lGD = 319 mm2 

4 

 
Mean LGD = 54.9 mm, Variance in lGD = 357 mm2 

 
Mean LGD = 28.8 mm, Variance in lGD = 116 mm2 

   
Fig. 13 Individual geometrical distance lGD for each training dataset (in Cartesian encoding). 
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of Scheme A, Scheme B still demonstrates impressive pre-
diction performance using Cartesian encoding in test da-
tasets. Figures 13 and 14 show that scheme B could suppress 
the mean geometrical distance LGD lower than scheme A in 
all multi-forming stages, and it also means scheme B exhib-
its sustained proficiency in the Cartesian encoding method. 

In order to compare the prediction performance in differ-
ent training conditions, the result of binary encoding was 

shown by the geometrical distance and compared with Car-
tesian encoding in Table 11. Performance was substantially 
excellent in single stage forming by any encoding method 
and by any schemes for input data preparation. Scheme B 
resulted in better prediction accuracy than scheme A, but the 
error was still large. Thus, further optimization was expected.   

Training datasets Test datasets  Training datasets Test datasets 

  

 

  

(a) binary cross entropy LBCE for binary encoding  (b) mean geometrical distance LGD for Cartesian encoding 
Fig. 15 Trend of loss functions in training using fringe images (Scheme B). 

 

Number 
of stages n (a) Scheme A (b) Scheme B 

1 

 
Mean LGD = 2.8 mm, Variance in lGD = 31 mm2 

 
Mean LGD = 2.8 mm, Variance in lGD = 31 mm2 

2 

 
Mean LGD = 66.6 mm, Variance in lGD = 2276 mm2 

 
Mean LGD = 16.0 mm, Variance in lGD = 55 mm2 

3 

 
Mean LGD = 262.8 mm, Variance in lGD = 10400 mm2 

 
Mean LGD = 55.4 mm, Variance in lGD = 1680 mm2 

4 

 
Mean LGD = 374.4 mm, Variance in lGD = 11900 mm2 

 
Mean LGD = 142.6 mm, Variance in lGD = 2350 mm2 

   
 

Fig. 14 Individual geometrical distance lGD for each test dataset (in Cartesian encoding). 
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3.2 Prediction results by means of fringe images Except for the height distribution, the imaginary fringe 
image was also used as the input of CNN to simulate the 

Table 12 Mean geometrical distance LGD in different training conditions for fringe image.  (unit: mm) 

  Training datasets 

 

Test datasets 

Encoding 
for paths 

Input 
data size 

Stage 
n = 1 

Stage 
n = 2 

Stage 
n = 3 

Stage 
n = 4 

Stage 
n = 1 

Stage 
n = 2 

Stage 
n = 3 

Stage 
n = 4 

Binary 
encoding Scheme B 0.0 0.0 0.4 0.0 0.0 4. 4 72.4 166.9 

Cartesian 
encoding Scheme B 5.3 10.9 15.3 19.0 5.2 16.9 43.4 74.1 

 

Number 
of stages n (a) Training dataset Correct 

prediction rate  (b) Test dataset Correct 
prediction rate 
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Fig. 16 Frequency distribution of predicted endpoints against ones for Scheme B (in binary encoding, epoch for training<=100). 
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photo of the experiment. After observing the result of the 3.1 
section, it is finding applying Scheme B to CNN has a better 
prediction performance than Scheme A. Therefore, in this 
section, only Scheme B and two encoding methods were 
used in training for the scanning path prediction by means of 
the fringe images.  

Figures 15(a) and 15(b) show the transition of the loss 
function for results using the input data prepared by scheme 
B, where scanning paths in datasets were encoded by differ-
ent methods. It is confirmed that both methods completed 
the training in a short time. And, comparing these results 
with Figs 7, 8 and 12, it should be noted that the overfitting 
was suppressed by the fringe image slightly smaller than the 
height distribution. The detailed loss trends of each stage are 
shown in Figs 22 and 23 at the final page.  

Figure 16 contains the bar charts displaying distributions 
of the endpoints of correct laser scanning paths against those 

predicted paths by the CNN trained using the binary encoded 
paths. Comparing Fig. 16 with Fig. 11, it is found that the 
fringe image archived higher prediction accuracy than the 
height distribution as input data to train CNN. The correct 
prediction rate was almost 100% for the training datasets in 
Fig. 16(a), but the rate decreased for the test datasets as the 
number of forming stage increased in Fig. 16(b).  

The training and testing results of using the Cartesian en-
coding method in training CNN are shown in Figs.17(a) and 
(b). Comparison with Figs. 13(b) and 14(b) described that 
the mean geometric distance LGD and the variance in indi-
vidual geometric distance lGD were improved by using fringe 
images. Thus, scheme B exhibited sustained proficiency in 
applying the imaginary fringe images to train CNN.  

The mean geometrical distance LGD using fringe images 
are also summarized in Table 12. With increase in the num-
ber of stages, the training performance using the binary 

N
um

be
r o

f 
st

ag
es

 n
 

(a) Training dataset (b) Test dataset

1 

Mean LGD = 5.3 mm, Variance in lGD = 4 mm2 
Mean LGD = 5.2 mm, Variance in lGD = 3 mm2 

2 

Mean LGD = 10.9 mm, Variance in lGD = 23 mm2 Mean LGD = 16.9 mm, Variance in lGD = 96 mm2 

3 

Mean LGD = 15.3 mm, Variance in lGD = 27 mm2 Mean LGD = 43.4 mm, Variance in lGD = 420 mm2 

4 

Mean LGD = 19.0 mm, Variance in lGD = 40 mm2 Mean LGD = 74.1 mm, Variance in lGD = 881 mm2 

Fig. 17 Individual geometrical distance lGD for each dataset with fringe images (in Cartesian encoding, Scheme B). 
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encoding exceeded that by Cartesian encoding. However, 
the prediction performance of Cartesian encoding was more 
excellent than the other ones in test datasets. Compared to 
Table 11, both errors of the two encoding methods were 
lower than the result using height distribution as input data. 
The result proved the efficacy of applying the imaginary 
fringe images to train CNN and gave the confidence to use 
projected photos in training CNN. 

4. Conclusions
In this study, laser scanning paths were predicted from

shapes of metal sheets using the CNN, which was trained by 
imaginary datasets containing height distribution or imagi-
nary fringe images. The influences of encoding methods of 
scanning paths and the input data size were investigated, and 
then the feasibility of using projected images for path pre-
diction was examined. Obtained results are concluded as fol-
lows: 

1) The results demonstrated the feasibility of applying
CNN to predict the scanning paths from height distri-
bution and fringe images in multi-stage laser forming.

2) Scheme B, which contains each forming stage's target
shape, helps CNN accurately predict the laser scanning
path in each stage.

3) The binary encoding method has more limitations than
Cartesian encoding in presenting the scanning path
endpoints. Therefore, CNN used binary encoding pre-
dicted better than the used Cartesian ones.

4) CNN took less training time and epochs number than a
fully connected neural network with two hidden layers
in previous study, because fully connected neural net-
works can be considered a rudimentary network struc-
ture in deep learning.

5) It is worth noting that using imaginary fringe images as
teaching data enables more precise prediction than us-
ing height distribution data in no matter encoding
methods. From this result, the actual pattern projected
picture will be used to build the CNN prediction system,
which can identify the real picture, in future research.
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