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Laser transmission welding offers the advantage of a non-contact and highly precise energy 
deposition. This enables the fabrication of complex and narrow seam geometries. Particularly in 
case of high-tech products, joints must be reproducibly manufactured in the smallest dimensions 
while maintaining high quality. Here, a process control is applied with the help of pyrometric sen-
sors. However, the temperature is only measured indirectly and the signal depends on various fac-
tors such as material properties, size of the heat affected zone and thermal properties. Furthermore, 
the pyrometer only delivers a spatially integrated signal which is why no information can be given 
on the welding seam contour or the shape of the melt pool. The aim of this work is the analysis of 
the laser transmission welding process by using Deep Learning algorithms. Image frames are rec-
orded which show the interaction area between the laser beam and material. The image will then be 
automatically processed by performing semantic segmentation. This allows the estimation of typical 
areas such as the weld pool or seam geometries. The results show a good agreement between the 
prediction and the ground truth with intersection over union values > 0.92. The extracted geometric 
information is then used to predict the laser power. Here, good prediction results are achieved for la-
ser powers < 15 W.  
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1. Introduction 
Plastics cannot only be manufactured easily but can also 

possess competitive properties compared to glass and sili-
con [1]. The production of high quality plastic components 
can be expensive and they often consist of multiple parts 
which need to be joined together. Therefore, there is a need 
for a joining process where the plastic components can be 
welded in a reliable way. One such promising technology is 
laser transmission welding (LTW) [2]. The temporal, spa-
tial and contactless energy deposition leads to sealing with 
low thermal load on the neighbouring regions [1]. Addi-
tionally, laser technology enables a highly automatic opera-
tion and online process monitoring techniques can be easily 
integrated. Recent developments enable a LTW process of 
transparent plastics where no absorber is needed. Here, 
beam sources are used which emit radiation in the natural 
absorption range of polymers (λ = 1.6 – 2.1 μm). This 
method is called absorber-free LTW and it is used for med-
ical or biotechnology applications [3].  

The motivation for process monitoring is to ensure the 
consistent quality of the produced goods by identifying or 
avoiding defects on the welding seam. Another goal is to 
reduce the manual control by an operator which also en-
sures reduced costs. At present, pyrometric sensors are used 
to measure the material temperature and to detect the heat 
radiation emitted during the welding process [3,4]. The 
signals generated from the process depend on factors such 

as the material properties, heat affected zone, beam param-
eters etc.  

In case of absorber-free LTW, there are some limitations 
when using pyrometry. For instance, there is an overlap 
between the laser wavelength (λ = 1.6 – 2.1 μm) and the 
measuring range (1.5 – 2.1 μm).  

Hence, both systems cannot be operated at the same 
time as the pyrometer would mainly measure the laser radi-
ation which exceeds the emitted thermal radiation by sev-
eral orders of magnitude. Sensors with a measuring range 
at higher wavelengths can only measure the temperature on 
the surface and not in the interface as polymers have low 
transmission properties in this range [3]. Furthermore, the 
use of a pyrometer gives a spatially integrated qualitative 
measuring signal because of which no information exists 
on the spatial information such as the seam geometry, the 
type of defects or the shape of a melt pool. Therefore, the 
welding performance is only measured indirectly.  

A new approach is the integration of Charge Coupled 
Device (CCD) sensors and process monitoring using Arti-
ficial Intelligence (AI) algorithms which is introduced in 
this work. They achieve better results than classic image 
processing algorithms and thus are more robust. The coaxi-
al integration of a camera allows a spatially and a time-
resolved observation of the welding process [5,6]. AI is a 
branch of computer science that is progressing rapidly with 
an intent to make a machine think in an intelligent way 
similar to the thinking process of human beings in order to 
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perform different tasks depending on the actual data. The 
demand for AI in applications such as natural language 
processing, vision systems, expert systems, speech recogni-
tion, robotics, sensor-based applications, handwriting 
recognition etc. has been dominant [7]. Similarly, the re-
search with regard to AI in laser technology is promising 
which aims at improving the process productivity. The pre-
sented work is partly based on previous works of Knaak et 
al. for laser welding of metals [5]. The recorded image 
frames are automatically analysed using semantic segmen-
tation which is a pixel-wise classification method. Each 
pixel is analysed and assigned to a pre-defined class such 
as weld seam, bubbles or burnings. This is carried out by 
training deep neural networks (NN). With this method, it is 
possible to visualise the geometrical features. 

In the next step, the geometrical features which are gen-
erated from semantic segmentation are used to predict the 
laser power. Here, the number of pixels of each geomet-
rical feature is passed into a neural network regressor 
which is a difference compared to semantic segmentation 
where the image data is processed. 

 
2. Fundamentals 
2.1 Absorber-free laser transmission welding 

In absorber-free laser transmission welding (LTW), 
beam sources are used which emit radiation in the intrinsic 
absorption bands of polymers (λ = 1.6 – 2.1 μm). Because 
of that, plastics can be welded without using any absorbing 
additives (see Fig. 1). A typical beam source is a thulium 
fibre laser with an emission wavelength of λ = 1.94 μm. 
Since transparent plastics can be welded with this method, 
absorber free LTW is especially suited for the encapsula-
tion of multilayer polymeric films for sensitive electronic 
devices such as organic photovoltaics or organic light emit-
ting diodes. Other promising application areas are life sci-
ence applications such as sealing of microfluidic devices 
[2,4,8].  
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Fig. 1 Absorption curves in the wavelength area of classic (A) and 

absorber-free (B) LTW. In (B), no absorbing additives are 
needed since most polymers show a natural absorption be-

haviour in this range. 
 
Damages inside the produced goods have to be identi-

fied during the production process. In LTW, typical defects 
are thermal damages which are caused due to air gaps or 
contaminations on the sample. Furthermore, local heat ac-
cumulation which appears during the acceleration and de-

celeration of the laser beam movement can lead to thermal 
damages. Seam damages can lead to an early failure of the 
component. Especially in areas such as medical applica-
tions, a premature failure of the component can have dra-
matic consequences for the patients. Hence, there is a high 
need for the development of a process control in absorber-
free LTW [3].  

Typically, pyrometric sensors are integrated coaxially 
inside the beam path to monitor the welding process. The 
emitted heat during the welding process is then measured 
by the sensor and converted into an electric signal [3,9]. A 
typical setup is shown in the following figure.  
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Fig. 2 The coaxial integration of a pyrometric sensor in LTW 

allows the observation of the welding process based on the 
emitted heat radiation. 

 
Thermal damages inside the plastic can be detected via 

a signal peak. Furthermore, a closed-loop control of the 
laser power can be easily established with the help of the 
pyrometric signal. However, due to the overlap between the 
emission wavelength of the beam sources (λ = 1.6 – 2.1 
μm) and the measurement range of the pyrometer (λ = 1.5 – 
2.1 μm), both systems cannot be operated simultaneously 
as the pyrometer would only measure the laser emission. 
Sensors with a measuring range at higher wavelengths can 
only measure the temperature on the surface and not in the 
interface as polymers have low transmission properties in 
this range. Mamuschkin et al. showed that it is necessary to 
operate the beam source in a pulsed mode whilst the ther-
mal radiation is measured between the laser pulses. The 
disadvantage is that an ideal pulse parameter has to be 
identified. The longer the pulse duration, the shorter the 
measurement duration becomes. If the pulse duration is too 
short, a disruption of the welding seam can occur [3].  

Another aspect is the spectrally and spatially integrated 
measurement method of the pyrometer. Thermal damages 
can be detected as a signal peak but it is not clear what kind 
of thermal damage (e.g. bubble formation, burnings etc.) is 
existing as well as the reason for its occurrence (e.g. con-
tamination, air gaps etc.). Additionally, the detection of the 
radiation becomes more difficult with smaller laser spot 
sizes. Especially for the encapsulation of microfluidic de-
vices, the spot diameter can reach values between 20 – 50 
μm. Furthermore, the emitted heat radiation is being atten-
uated through optical components such as lenses or mirrors.  
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2.2 Convolutional neural networks and semantic seg-
mentation 

Deep Learning is a sub-field of machine learning con-
taining algorithms based on layers to create an artificial 
network which can learn on its own and predict the out-
come. Deep complex neural networks can be used to create 
a human-like AI as the networks help in analysing large 
datasets. In this work convolutional neural networks (CNN) 
are used which will be presented in the following [7].  

The purpose of CNNs is to identify the patterns in a 
given dataset of images by extracting the features for mak-
ing predictions [10]. The layers in the network capture the 
spatial information by learning through kernels or filters. 
The filters have a small receptive field and are convolved 
across the image. Apart from these convolutional layers, 
the input is further processed via dropout and pooling lay-
ers as well as different activation functions. As a result, 
CNNs have the capability of identifying spatial patterns 
such as edges, shapes, curves, textures, objects, shading 
changes etc. The low-level features (simple) are detected at 
an initial stage followed by medium-level features and fi-
nally the high-level features (complex) are detected [7]. 
The following figure shows a simple CNN which is used 
for detecting handwritten digits. 
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Fig. 3 The architecture of a simple CNN for the classification of 

handwritten digits. The input picture is processed by dif-
ferent filters and functions. Modified according to [10]. 

 
The fully connected layers are responsible for the clas-

sification whilst the rest of the layers are responsible for the 
feature extraction. Each layer in a CNN is composed of 
weights and biases that sum up to the total number of pa-
rameters in the entire network [7]. In this work, the fully 
connected layers are replaced by convolutional layers 
which makes the network a fully convolutional network. 
Further information about this concept can be found in [11]. 

Applications of CNNs include image classification, ob-
ject detection, object retrieval, segmentation, instance seg-
mentation etc. In this work, semantic segmentation is used 
which is a pixel-wise classification. Here, certain areas in 
an image are segmented into different groups. Each group 
is marked with a particular colour so that the size and the 
location of each group can be estimated [7, 11]. 

2.3 Prediction of laser power using regression analysis 
To predict the laser power, a regression analysis is used. 

Regression analysis is a statistical technique used to predict 
numerical values. They contain methods which help ana-
lyse the relationship between two or more continuous vari-
ables [12]. In this work, a NN is used to perform regression 
analysis. An example of such a NN is presented in the fol-
lowing figure. The model takes a vector as an input and 
outputs a scalar.  

 
Fig. 4 A neural network which can be used to perform regression 

analysis. The model takes a vector as an input and outputs 
a scalar.  

 
Backpropagation is used during the training process to 

adjust the weights with the aim to minimise the prediction 
error [7].  

The output variable is the laser power whilst the input 
parameters are the number of pixels of each class which 
can be extracted based on the output of the semantic seg-
mentation task. For instance, an increase of the laser power 
leads to a higher seam width. This on the other hand in-
creases the number of pixel of the seam class which can be 
detected and analysed by the NN regressor. The prediction 
can be plotted against the real values to assess the perfor-
mance of the network. 

 
3. Implementation 
3.1 Generation and preparation of the data set  

Contour welding tests with a constant feed rate of 
v = 3.33 mm/s are carried out to generate the data set. The 
laser power is varied between P = 6.6 - 47 W. Apart from 
intact welding seams, thermal damages in the form of bub-
ble formation or burnings are created in the polymeric 
sample to cover a wide range of welding scenarios. As test-
ing material, polystyrene is used. In order to record the 
welding process, a camera (DMK 33UX287, The Imaging 
Source Europe GmbH, Bremen, Germany) is coaxially 
integrated inside the beam path. The following figure 
shows the experimental setup. 
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Fig. 5 Schematic experimental setup for recording the welding 

process (left) and the defined classes (right) which will be 
used for the semantic segmentation process. 
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In total, 97 process videos are recorded and 3224 image 
frames are extracted. The following classes were defined:  

• background 
• seam 
• bubbles 
• burnings 

The clamping device as well as the non-molten material 
belong to the background. Bubbles are generated if the 
laser power is increased and exceeds a certain threshold. If 
the decomposition temperature inside the sample is ex-
ceeded, burnings occur. This leads to an overexposure of 
the camera sensor. The dataset is divided into a train, vali-
dation and test set with a ratio of 80%, 10% and 10%. For 
the training process, the whole data set has to be manually 
annotated. This is carried out using the open source pro-
gram LabelMe. The following figure shows the annotation 
of an exemplary image frame.  

 
Image Manual annotation Image + 

Manual annotation

500 µm

 
Fig. 6 Annotation of the data set. The annotation is then used for 

the training of the networks. 
 

Since the data set size is quite low, there is a risk of an 
overfitting of the model on the data set. Therefore, the size 
is artificially increased using data augmentation. Here, the 
image frames are additionally cropped, rotated, or mirrored 
(see Fig. 7).  

 
Original Rotation Horizontal flip Crop

500 µm

 
Fig. 7 Increasing the data set using data augmentation in order to 

prevent overfitting. 

3.2 Model architecture for semantic segmentation 
In this work, a UNet is used which was developed by 

Ronneberger et al. for the detection of cells on microscopic 
images [13]. 

First, the input is processed in four convolutional 
blocks. Each block consists of two convolutional layers 
with a 3x3 filter, a ReLU activation function and a max-
pooling layer. These elements are forming the downsam-
pling path since the input is compressed. Furthermore, the 
number of filter channels is doubled with each downsam-
pling step. The downsampling path is responsible for the 
classification of the input. In the upsampling path, the input 
is upscaled so that the output eventually has the same di-
mensions as the input. Whilst the downsampling is respon-
sible for the classification, the upsampling ensures the lo-
calisation of the classes on the image frame. The upsam-

pling process is carried out with four upsampling blocks. 
Each block consists of a transposed convolutional layer 
with a 2x2 filter, two convolutional layers with a 3x3 filter 
and a ReLU activation function. Each downsampling pro-
cess has a corresponding upsampling process which leads 
to a symmetric U-shape of the network. Additionally, the 
output of a downsampling process is directly connected to 
the corresponding upsampling process via a skip connec-
tion. All in all, the network consists of 23 convolutional 
layers. The architecture is presented in Fig. 8 

 
Fig. 8 For the semantic segmentation, the UNet architecture is 

used which was developed by Ronneberger et al. [13]. 
 

Apart from the classic U-Net, further models were U-
Net used which were modified with a ResNet architecture.  

• UNet with ResNet-18 architecture 
• UNet with ResNet-34 architecture 
• UNet with ResNet-101 architecture 
 

For further information about ResNet architectures re-
fer to [14].  

3.3 Result of semantic segmentation 
The four models are trained with the training set. The 

hyperparameter which were varied are shown in the follow-
ing table. 

 
Table 1 Hyperparameter tuning parameters 

Hyperparameter Value 

Batch size 8, 16, 32, 64 

Learning rate 10-2 - 10-5 

Optimiser SGD, ADAM 
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The training is executed on GPU Nvidia Quadro and 
Tesla (Nvidia Corp, Santa Clara, California) for about 100 
– 150 epochs depending on the model architecture. To fur-
ther improve the performance of the models, an evaluation 
is carried in finetuning the hyperparameters optimiser, 
batch size and learning rate. Fig. 9 shows some classifica-
tion results for the classes background, seam, bubbles and 
burnings which are generated using the UNet model. A 
good agreement between the ground truth and the classifi-
cation result can be observed. It can be seen that an intact 
weld seam remains transparent similar to the background. 
The clamping devices shows some scratches which reflect 
the light. If the laser power is increased, bubbles occur in 
the middle of the seam. In this area, the material loses its 
transparency. Burnings on the sample lead to an overexpo-
sure of the camera sensor so that only the burnings can be 
observed. The surrounding material is underexposed and 
remains dark. Apart from burnings, bubbles can also be 
observed. 

 

Camera Manual annotation
Semantic

segmentation

500 µm

500 µm

500 µm

 
Fig. 9 Three exemplary classification results. Each row shows a 

different example. Left: image frame, middle: ground truth, 
right: semantic segmentation. 

 
The classification results can be evaluated using the In-

tersection over Union value (IoU). As it can be seen in Fig. 
10, the IoU value is defined as the area of overlap con-
tained between the ground truth and the predicted (seg-
mented) mask divided by the union between them [7].  

 

 
Fig. 10 Definition of the intersection over union metric. 

 

The IoU values are calculated for each model (see 
Tab. 2). All models show a high accuracy with an IoU val-
ue of 0.92 – 0.93. This high agreement between the ground 
truth and the classification output can be explained by the 
high proportion of the background which covers the image 
frames. Here, the IoU value of the background is 0.96 – 
0.97. The classes seam and bubbles have IoU values of 
0.79 – 0.82 and 0.88 – 0.89 respectively. The lowest accu-
racy is achieved for the burnings with a value of 0.74 – 
0.79.  

 
Table 2 Summary of IoU values. 

Model UNet 
UNet_ UNet_ UNet_ 

ResNet18 ResNet34 Resnet101 

IoU Total 0.93 0.93 0.92 0.93 
IoU Background 0.97 0.97 0.96 0.97 

IoU Seam 0.82 0.82 0.79 0.81 
IoU Bubbles 0.88 0.88 0.84 0.89 
IoU Burnings 0.79 0.79 0.74 0.78 
 
In order to better identify the reasons for the classifica-

tion errors, some exemplary outputs are presented in Fig. 
11. It can be seen in the upper picture, that unfavourable 
light reflection causes the model to classify the seam as 
bubbles. Furthermore, scratches on the aluminium plate of 
the clamping device are identified as seams. Problems also 
occur when there are burnings on the sample as the sensor 
is overexposed.  

500 µm

500 µm

500 µm

Camera Manual annotation
Semantic

segmentation

 
Fig. 11 Three exemplary defective classification results. Each row 

shows a different sample. Left: image frame, middle: 
ground truth, right: semantic segmentation. 

 
In the next step, a regression analysis is carried out to 

predict the laser power on the basis of the segmentation 
results. The data set for this task is created by extracting the 
number of pixels for each class. The following table shows 
an example of the structure of the regression analysis da-
taset. 
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Table 3 Structure of the regression analysis dataset. 

Sample 
No. 

Background 
[px] 

Bubbles 
[px] 

Burnings 
[px] 

Seam 
[px] 

Laser 
power 
[W] 

1 302111 13385 0 73304 14.1 
2 216229 6440 92907 73224 47.67 
3 319247 32280 0 37273 7.48 

4 369279 13704 0 5817 8.3 
 

The number of pixels for the classes background, bub-
bles, burnings and seam are passed into the model. The 
output will then be compared to the laser power.  

3.4 Prediction of process parameters using regression 
In this chapter, the process parameters are predicted us-

ing different NN architectures. The dataset (see example in 
Tab. 3) is split up into a training and test set with a ratio of 
90:10. Additionally, the dataset is pre-processed using scal-
ing and normalisation to improve the model’s performance. 
The optimal parameters for the batch size and optimiser are 
identified using hyperparameter tuning and the networks 
are trained for 500 epochs. As evaluation metric, the root 
mean squared error (RMSE) and the coefficient of determi-
nation R² are used. R² is defined as the proportion of the 
variance in the dependent variable (laser power) that is 
predictable from the independent variables (number of pix-
els of the classes). It can be calculated as follows [5]: 

 

   (1) 
 
Here, ytrue is the true laser power, ypred is the predicted 

value and ȳtrue is the mean of all true laser powers. If R² = 1, 
all values can be perfectly depicted with the regression 
model. Therefore, the higher the number is, the better the 
model fits the dependent variables. The following table 
shows the results of three models where the highest accura-
cy was achieved.  

 
Table 4 The used models and the resulting R² and RMSE 

values 

No. Model structure Batch size /  
Optimiser R² / RMSE 

1 512, 256, 128 64 / ADAM 0.59 / 10.06 W 

2 512, 512, 256, 
256, 128, 128 64 / SGD 0.58 / 10.09 W 

3 512, 512, 256, 
256, 128, 128 32 / ADAM 0.6 / 9.92 W 

 
For example, a model structure of 512, 256, 128 means 

that the NN consists of three layers with 512 neurons in the 
first, 256 in the second and 128 in the third layer. The re-
sults show that a RMSE > 9 W and R² value > 0.58 are 
achieved which are calculated based on the predicted and 
real laser power. It can also be seen that a simple model 
with 3 layers achieves a similar performance than models 
with more layers. In order to better estimate the distribution 
of the error, the predicted and the actual laser power are 

plotted in a fitted graph for model no. 3 as an example (see 
Fig. 12). 
 

 
Fig. 12 Fitted graph for model no.3. The graph shows the compar-

ison between the predicted (vertical axis) and the actual 
(horizontal axis) laser power. 

 
The x-axis shows the actual laser power values and the 

y-axis shows the corresponding prediction of the neural 
network. Ideally, the prediction should be identical to the 
actual laser power values so that all points are located on 
the dashed line. It can be seen that there is a good agree-
ment with most predicted values in the lower laser power 
range between 1 – 15 W. Therefore, all points are located 
near the dashed line.  

However, at laser powers > 40 W, higher deviations can 
be detected. In some cases, the neural network outputs a 
laser power between 5 – 10 W which leads to a high RMSE. 
The reason behind this is that at higher laser powers, burn-
ings occur in the sample. As already mentioned in the pre-
vious chapter, this leads to an overexposure of the sensor 
which makes subsequent prediction of the laser power 
more difficult. Based on the shown results in Fig. 12, the 
R² and RSME values can be calculated on the basis of the 
test set. 

 
4. Conclusion and outlook 

In this work, the absorber free LTW process was ana-
lysed using computer vision and deep learning algorithms. 
The welding process was recorded at different laser powers. 
The extracted image frames were manually annotated and 
then used to train different neural networks in order to per-
form semantic segmentation. The models were able to de-
tect thermal damages in the welding seam with a good 
agreement between the ground truth and the predicted mask. 

The geometric pattern of the feature areas was provided 
as input to the regression models to predict the laser power. 
The analysis was carried out using a NN regressor with a 
R² score between 0.5 – 0.6. A good agreement can be found 
at lower laser powers from 1 – 15 W where at higher devia-
tions occur at laser powers > 40 W. The reason for this ob-
servation is that burnings occur at higher laser powers 
which leads to an overexposure of the camera sensor. This 
on the other hand makes a prediction more difficult.  

In future works, the data set should be increased to fur-
ther improve the classification performance of the model. 
This can be done by recording more videos or by further 
applying data augmentation techniques. Another step in 
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improving the classification performance is to improve the 
quality of the image frames. As it could be seen, unfavour-
able light reflections which were caused by scratches on 
the clamping device are influencing the results.  

In order to establish this method as a new process 
monitoring technique, the future work should focus on an 
in-process analysis where the welding process is analysed 
in real-time. It might be necessary to facilitate the model 
architecture in order to achieve a low latency. Furthermore, 
a closed-loop control of the laser power should be estab-
lished.  
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