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We developed a laser heating test system called the selective laser thermoregulation (SLT) sys-
tem using a fiber laser and a galvano mirror system to confirm the reliability of SiC/SiC CMCs, 
which are expected to improve the efficiency of aircraft engines. However, to realize the required 
temperature distribution using the SLT system, many parameters must be determined. For automatic 
determination of the parameters, we developed AI for estimating the laser power needed to repro-
duce the required temperature distribution. We created datasets for machine learning by numerical 
simulation of laser heating and compared three types of fully connected neural networks. The AI 
learned the relationship between laser power and the temperature distribution and then estimated the 
laser power from an untrained temperature distribution. The R2 of the 2-layer neural network was -
1.64, while the R2 values of the 3- and 4-layer neural networks were 0.98 and 0.99, respectively. 
Thus, we found that three or four layers of fully connected neural network are sufficient for realiz-
ing AI which can estimate laser power from a temperature distribution. 
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1. Introduction 
Increasing demands are being placed on aircraft in re-

cent decades, because aircraft are essential for the global 
society. 

SiC/SiC ceramic composites (CMCs) are expected to 
replace Ni-based alloys as new materials for improving the 
efficiency of aircraft engines [1][2]. SiC/SiC CMCs have 
lower density and higher heat resistance than the present 
alloys and are promising materials for aircraft engines. 
However, their reliability should be confirmed by heating 
tests. 

Many studies have measured the physical properties of 
SiC/SiC CMCs in a high-temperature environment [3]-[6]. 
However, in actual use in an engine, SiC/SiC CMCs will be 
heated and cooled repeatedly for a long period of time. 
Therefore, accelerated heating tests that repeat heating and 
cooling over an extended period are necessary to confirm 
their reliability. 

A heating test method using a CO2 laser has been de-
veloped to shorten the test time [7]. It is possible to heat 
locally and to repeatedly heat and cool rapidly by using a 
laser. However, water vapor is generated inside aircraft 
engines and it absorbs CO2 laser light. Therefore, it is hard 
to test CMCs in an environment simulating the inside of an 
aircraft engine. 

Therefore, a heating test system using a fiber laser was 
recently reported by Whitlow et al [8]. The wavelength of 
the fiber laser is 1.07 μm  and its absorption coefficient for 
water vapor is much smaller than that of the CO2 laser [9]. 

In previous laser heating test studies, the laser beam is 
shaped into a rectangle by static optics before the laser is 

irradiated on the test piece to heat a rectangular area. How-
ever, with this method, the outer edge of the irradiated sur-
face tends to be cooled. In addition, if the cooling condi-
tions change due to changes in the gas flow around the test 
piece, it is difficult for static optics to adjust the input pow-
er distribution dynamically. Therefore, it is necessary to 
heat the surface uniformly and control the input power dis-
tribution dynamically. 

We developed a heating test system called the selective 
laser thermoregulation (SLT) system. The SLT system can 
dynamically adjust the input power distribution using a 
fiber laser and a galvano mirror system if there are any 
changes in the cooling conditions or shape of a target [10]. 

However, the SLT system requires the user to determine 
many parameters such as the laser power, the spot size, and 
the scanning path to realize the required temperature distri-
bution. Moreover, if the required temperature distribution, 
the shape of the test piece, or the cooling conditions change, 
many parameters will need to be determined again accord-
ing to the changes. To accelerate research on the laser heat-
ing test, AI to estimate the irradiation conditions to achieve 
the required temperature distribution is necessary. 

In this study, we propose the development of AI for es-
timating laser power to reproduce a required temperature 
distribution. In typical laser heating studies, we determine 
the laser power first, then the temperature distribution is 
obtained as the result. On the other hand, in this study, the 
required temperature distribution is input to the developed 
AI, and then the AI estimates the laser power to realize the 
temperature distribution. It is easy to determine a number 
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of parameters with AI for several required temperature dis-
tributions and test piece shapes. 

 
2. Research method 

Our research consisted of three steps. Firstly, we creat-
ed an input dataset of temperature distributions by numeri-
cal simulation of laser heating. The input for the simulation 
was the irradiation conditions of the laser and the proper-
ties of the heating target. The output of the simulation was 
the temperature distribution. Secondly, the AI learned the 
relationship between the temperature distribution and the 
laser power. Finally, the laser power could be estimated by 
the AI even from an untrained temperature distribution. 

2.1 Input datasets from numerical simulation 
We created datasets for learning and estimation by nu-

merical simulation of laser heating. The governing equa-
tions shown in equation (1) were calculated using the finite 
difference method in two dimensions, considering the laser 
input power, thermal conduction of the target material, and 
thermal loss to the air due to heat transfer and radiation. 
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L , )(TC , )(TH , and )(TR  are the laser input power 

[W], thermal conduction [W], heat transfer [W], and radia-
tion [W], respectively. ρ , V , C , T , t , α, and A are the 
density [kg/m3], volume [m3], specific heat [J/(kg∙K)], 
temperature [K], time [s], absorption rate, and area [m2], 
respectively. The details of L , )(TC , )(TH , and )(TR  in 
equation (1) are shown in equation (2) to equation (5). 
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P  and γ  used in equation (2) are the laser power [W] 

and the reflectivity of the laser at the target surface, respec-
tively. λ  used in equation (3) is the thermal conductivity 
[W/(m∙K)]. h  and 0T  in equation (4) are the heat transfer 
coefficient and the background temperature [K], respec-
tively. ε  and σ  in equation (5) are the emissivity and the 
Stefan-Boltzmann constant, respectively. 

As shown in Fig. 1, the boundary conditions are a heat 
transfer boundary condition of 0.5=h  W/m2∙K for the 
area in contact with the test piece gripping area, and 

0.10=h  W/m2∙K for the other boundary areas. 
We used the Cartesian coordinate system, and the num-

bers of grid points in the x  and y  directions were 41 and 9 
respectively. The time step was 3100.1 −×  s. 

The shape of the test piece was 40 mm × 8 mm × 2 mm 
(thickness). The coordinate system had the origin at the 
center of the test piece. The laser with a radius of 4 mm 
was irradiated on a single point. 

An example of the numerical simulation for irradiating 
the laser at x = 0 and y = 0 is shown in Fig. 2. Numerical 

simulation was performed for a total of 153 different condi-
tions: 9 different laser power values ranging from 400 W to 
4000 W in 450 W increments, and 17 different irradiation 
positions values ranging from 16−  mm to 16  mm in 2  
mm increments in the x  direction. All the data generated 
were the calculated results for 10 seconds after laser irradi-
ation. 

We divided the data into training data and test data, 
randomly dividing the 153 datasets into 80% training data 
and 20% test data. Training data were used for learning, 
while test data were used to confirm the generality of the 
developed AI, such as whether the AI overfit the training 
data. 

 
 

 
 
 
 

 
Fig. 2 Visualizing the calculated temperature distribution  

when the laser is irradiated at x=0 mm, y=0 mm  
by numerical calculation. 

 

 
 
 

Fig. 1 The boundary conditions. The grayed area is the calcu-
lated area. 

Fig. 3 Neural network configuration for estimating  
laser power from temperature distribution.  

(a) 2 layers, (b) 3 layers, (c) 4 layers 
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2.2 Neural network 
In this study, we developed and compared 3 neural 

networks as shown in Fig. 3. The legends used in Fig. 3 are 
shown in Fig. 4, which describes the types of layers, the 
activation functions, and the number of input and output 
nodes used in each layer. The three neural networks had 
different numbers of layers and nodes. However, the fol-
lowing procedures were the same. Firstly, the 2D tempera-
ture distribution with 9 rows and 41 columns was flattened 
to a 1D vector of 369 elements. After the conversion of the 
input data, all the layers were fully connected. In the fully 
connected layers, all the activation functions but the last 
layer are ReLU functions [11] and the last is the identity 
function, the loss function is the mean square error, and the 
optimizer is root mean square propagation. 

 
3. Evaluation of the AI 

As mentioned in section 2, the AI learns the relation-
ship between the irradiation conditions and temperature 
distribution using training data. The results are evaluated 
by the mean absolute error (MAE). MAE is expressed in 
equation (6). 
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where n , ky , and kt  are the number of data, the k -th pre-
dicted value, and the k -th correct value, respectively.  

Furthermore, the test data are used for final evaluation 
of whether the AI can estimate the correct laser power even 
from the untrained test data. The results are evaluated 
by 2R . As mentioned in section 2.1, 153 data were random-
ly divided into 80% training data and 20% test data. There-
fore, we performed the following series of steps three 
times: dividing the dataset, learning with the training data, 
estimating the laser power from the untrained data using 
the test data, and evaluating the results by 2R . 2R  is ex-
pressed in equation (7). 
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where iy , it , and y  are the i -th predicted value, the i -th 
correct value, and the average of the predicted values, re-
spectively. 

We set two hyperparameters: epoch numbers and batch 
size. We set the epoch numbers to 250 and the batch size to 
32. 

 
 
 

 
 
 
 
 

4. Results 
Fig. 5 shows one case of the relationship between epoch 

and MAE for each neural network. The blue line is the re-
sults using training data and the orange lines are the results 
using test data. In all cases, the blue line and the orange 
line follow approximately the same trajectory. In Fig. 5(c), 
although the training data seem to deviate from the test data 
when the number of epochs is more than 100, the vertical 
axis is a log scale and the MAE itself is sufficiently small. 
Therefore, the data are not overlearned. 

Fig.  6 shows the relationship between the exact input 
power and the predicted input power using test data. The 
points are all the results of three trials. 

Moreover, the 2R  of the 2-layer neural network is 
64.1− , that of the 3-layer neural network is 0.98, and that 

of the 4-layer neural network is 0.99. 2R  is the average 
value of the three trials. 

 

Fig. 4 Legend of a block used in Fig. 3. 

Fig. 5 MAE of each neural network during training and test-
ing. 

(a) 2 layers, (b) 3 layers, (c) 4 layers 
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5. Discussion 

Fig. 5 shows that MAE decreased as learning pro-
gressed in all cases. From these results, we confirmed that 
the parameters such as the weights and the bias inside the 
neural network were well optimized, which means the AI 
successfully learned the relationship between the laser irra-
diation conditions and the temperature distributions. Fur-
thermore, there was not much difference between the MAE 
results of the training and test data. Therefore, we con-
firmed that the AI was able to learn the training data with-
out problems such as overfitting. 

Fig.  6(a) shows that the AI with the 2-layer neural net-
work estimated the laser power differently from the exact 
input power because the points are not on the dashed line. 
Fig.  6(b) and Fig.  6(c) show that the AI with the 3-layer or 
4-layer neural network gave an estimation of the laser 
power close to the exact input power, because the points 
are aligned along the dashed line. Moreover, we obtained 

values of 0.98 and 0.99 for R2 from the predicted results 
using the 3-layer and 4-layer neural networks, which are 
close to 1, although the R2 of the 2-layer neural network 
was -1.64. Therefore, we found that adding layers to the 
neural network is effective in estimating the laser power 
from a temperature distribution using a fully connected 
neural network, but 4 layers are sufficient. 

 
6. Conclusion and future work 

We succeeded in developing AI for estimating laser 
power from a temperature distribution. The 3-layer and 4-
layer neural networks, which had deeper layers than the 2-
layer neural network, could estimate laser power more ac-
curately. The R2 values for the 3-layer and 4-layer neural 
networks were 0.98 and 0.99, respectively. 

In this study, the AI estimated only the laser power 
from the temperature distribution. However, the irradiation 
conditions of the laser actually involve more parameters. 
Therefore, we will increase the number of parameters to be 
estimated in future work. 
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