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Confocal laser scanning microscopy (CLSM) and scanning electron microscope (SEM) systems 
are commonly used for measuring the dimensions of laser-processed objects. Nevertheless, both 
methods require some time for preprocessing and measurement, thereby entailing high costs. We pro-
pose a simple, fast, and inexpensive method for measuring submicrometric structures using deep 
learning with multi-focus microphotographs taken using an optical microscope. The average errors in 
depth and height for a laser-processed groove and a laser-processed ridge are, respectively, 0.1667 
μm and 0.4349 μm. The estimation time is 971.50 ms for the 64 × 64 μm2 area. 
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1. Background
Semiconductor manufacturing has increasingly de-

manded precise processing [1]. Particularly for semiconduc-
tor packaging or so-called “postprocessing”, an interposer, 
which mounts a die cutout from a silicon wafer, requires sub-
micrometer-level processing dimensions. Similarly, on the 
surface of a ceramic electrostatic chuck for fixing a silicon 
wafer, processing in submicrometer order is necessary [2]. 
In these applications, laser processing can achieve high 
yields. Nevertheless, many difficulties hinder measurement 
of the process results. 

Confocal laser scanning microscopy (CLSM), SEM sys-
tems, and probes [3] are generally used for measuring di-
mensions. These devices can measure dimensions precisely, 
but they are expensive and require long measuring times. For 
those reasons, they cannot take full advantage of fast laser 
processing. For example, a laser microscope takes about 40 
s to measure an area of 128 × 128 μm2. By optical micros-
copy, some studies have realized the measurement of sub-
100 nm feature size, combining optical science and infor-
matics [4] [5]. However, these works do not mention the cost 
or measurement time. Therefore, it may not be possible to 
implement them directly in manufacturing sites. In these re-
spects, this paper is practical. In semiconductor industry, 
which is the subject of this article, cost and speed efficiency 
are sometimes more crucial than resolution [6]. 

Therefore, this study aims to develop a new method in 
line with the following concepts. 

• Low-cost systems only with an optical microscope
• High-speed machine learning for shape estimation
• A reproducible evaluation method that does not rely on

the human eye 
In the manufacturing process, accuracy is improved 

through evaluation as well as measurement of the machining 
results. In this research, we aim to develop a system that au-
tomatically measures and evaluates the processing results, 
rather than just a measuring device. 

Our system uses multi-focus microphotographs taken by 
a low-cost optical microscope to find cross-section infor-
mation related to a substrate. The system then creates virtual 

cross-sectional images using high-speed machine learning. 
The processing flow is presented in Fig. 1. 

Fig. 1 Process flow. 

2. Semantic Segmentation
We use a deep learning algorithm called “semantic seg-

mentation” to label each pixel in an image. By this technique, 
a cross-sectional shape is estimated from a virtual cross-sec-
tional image. This approach resembles the original semantic 
segmentation mission, which distinguishes all objects in an 
image. 

Several neural networks are used for semantic segmen-
tation. We take SegNet [7] to estimate the cross-sectional 
shape. Compared to other neural networks, SegNet features 
a special “convolutional encoder–decoder structure” in the 
figure, which makes it possible to label objects of various 
sizes in the image through the network. U-Net [8], which is 
more accurate than SegNet, is known as a network for se-
mantic segmentation. However, because the microscopic 
images used in this study are very noisy, the accuracy of U-
Net is almost the same as that of SegNet. On the other hand, 
SegNet was more advantageous in terms of execution time; 
U-Net takes about twelvefold time for training and about
double time for estimation. Therefore, we adopted SegNet in
this study.

3. Implementation
For experiments, an alumina ceramic substrate, which is

also used for the electrostatic chuck device, is used. It is du-
rable, white-colored, and has little reflectivity: transparent 
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materials are unsuitable for micrographs. Processes of two 
types are prepared to produce a laser-processed groove (con-
cave) and a laser-processed ridge (trapezoidal convex). 

3.1 Laser-processed groove 
Laser processing is performed on the alumina ceramic 

material to produce seven grooves, for which processing pa-
rameters are varied. These grooves have depths of 8–10 μm. 

3.2 Laser-processed ridge 
A single ridge of 8 μm height is a sample made by shav-

ing the alumina ceramic periphery with a laser. 

3.3 Virtual cross-sectional images 
Multi-focus microphotographs are obtained by changing 

only the focal planes in the vertical direction while a view 
range is fixed for the photographic conditions. Fig. 2 shows 
a cross-sectional image of the material converted from the 
multi-focus microphotographs. The image range is 257 × 
128 μm2 for each. The focal planes are at a pitch of 0.5 μm 
in the depth direction. For the same image range, 40 depth 
images are taken. Appendix A presents pseudo-code for tak-
ing cross-sectional images. 

Fig. 2 Cross-section images converted from multi-focus 
images (optical microscope OLS4100, Olympus Corp.). 

3.4 Teacher data, training data, and validation data 
Teacher data for the cross-sectional images are obtained 

using a laser microscope for the same image range. Fig. 3 is 
a sample pair of a cross-sectional image and a teacher image. 
The image size of a teacher image is 512 × 32 pixels. Re-
garding training data and validation data, augmented images 
of 128 × 32 pixels are cut out randomly from the original 
cross-section images, as shown in Fig. 4. 

Fig. 3 Pair of a cross-section image and teacher data. 

Fig. 4 Augmented images for training data and validation 
data cut out from an original cross-section image. 

4. Estimation Results with SegNet Four Layers
4.1 Laser-processed groove

It took 3,900 s to train 64,744 images on a PC (Core i7-
8700@3.20 GHz; Intel Corp. and GeForce GTX 1080; 
Nvidia Corp.). By inference, the shape estimation was com-
pleted in 21.39 s for 6,144 validation data, resulting in an 
accuracy of 0.9543 on pixel bases (Table I). Fig. 5 presents 
a sample pair of validation data: a virtual cross-section im-
age and an estimated cross-section, which is located near the 
position of Fig. 3; they exhibit the same characteristics. The 
estimated groove is expanded to a whole shape. Fig. 6(a) 
portrays a measured groove structure with a laser micro-
scope, whereas Fig. 6(b) is an estimated one with SegNet; 
each comprises 256 cross-sections. The area is 64 × 64 μm2. 
The estimation time is 971.50 ms. 

The laser light output decreases radially from the center 
according to a normal distribution. Grooving is one-stroke 
processing. Therefore, it can be assumed that the shape after 
processing is close to a normal distribution graph. We tried 
to fit the grooving shape to the normal distribution graph for 
approximation. Three parameters: groove width w, groove 
center c, and groove depth d were introduced as normal dis-
tribution graph parameters. Then, we compared the three dif-
ferences parameters between the measured shape with a la-
ser microscope and the estimated shape with SegNet. The 
average difference was calculated from the values of the la-
ser microscope. The average µ and standard deviation σ of 
the differences between the measured and estimated ones ex-
hibit accuracies of the estimated groove shapes. Fig. 7 shows 
fitting examples and accuracies of the estimated shapes 
when the fitting curves are, respectively, one-sigma, two-
sigma, and three-sigma normal distribution graphs. Appen-
dix. B is a pseudo-code of the detailed algorithm for fitting 
to the normal distribution graph. 

Table I Accuracy for a laser-processed groove on pixel ba-
ses 

Positive Negative

Positive 0.937 0.063

Negative 0.037 0.963

Actual

Prediction
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Fig. 5 Pair of a cross-sectional image and validation data. 

(a) 

(b) 
Fig. 6 (a) Measured groove structure with a laser micro-
scope (OLS4100, Olympus Corp.) and (b) estimated one 

with SegNet. 

(a) 

(b) 

(c) 
Fig. 7 Fitting examples and accuracies of the groove struc-
ture for normal distribution approximations: (a) one sigma, 

(b) two sigma, and (c) three sigma.

4.2 Laser-processed ridge 
We prepared 61,440 training data and 10,240 validation 

data for the single ridge. Table II shows that the accuracy is 
0.9148 on pixel bases. Figs. 8(a) and 8(b) respectively depict 
a ridge structure measured with a laser microscope and a 
ridge structure estimated using SegNet. For graph fitting, 
height h, upper base u, lower base l, and center c were de-
fined as parameters because a cross-section of a ridge is re-
garded as a trapezoid. Fig. 9 shows a fitting example and 
accuracies of the estimated shapes. Appendix. C presents 
pseudo-code of the algorithm for fitting to the trapezoid. 

Table II Accuracy in laser-processed ridge on pixel bases 

Positive Negative

Positive 0.922 0.078

Negative 0.096 0.904

Actual

Prediction

152



JLMN-Journal of Laser Micro/Nanoengineering Vol. 16, No. 2, 2021 

(a) 

(b) 
Fig. 8 (a) Ridge structure measured with a laser micro-

scope (OLS4100, Olympus Corp.) and (b) estimated using 
SegNet. 

Fig. 9 Fitting example and accuracies of the ridge structure 
for trapezoid approximation. 

5. Summary and Discussion
Our proposed method estimated dimensions in laser-pro-

cessed submicrometric structures. By fitting the laser-pro-
cessed groove with the proposed evaluation method, the av-
erage errors of ridge depth and height are 0.1667 μm and 
0.4349 μm, respectively, in comparison with the proposed 
method and the conventional shape measuring instrument. 
The accuracy reached submicrometer order. High-speed 
shape estimation is possible by combining a computer and a 
microscope. 

Since the proposed method requires pre-training, it is 
suitable for mass production, for example, defect detection 
on a manufacturing line. Further experiments with various 

imaging conditions and materials are needed to determine 
whether our proposed method can be used for other purposes. 

In this paper, the experiments were performed only on 
the white, durable, and low-reflective ceramic since we fo-
cused on ceramic interposers and ceramic electrostatic 
chucks used in semiconductor manufacturing. The proposed 
method, however, processes a monochrome image in ma-
chine learning; color is not an issue. We believe that it is 
possible to measure less durable material that are easily 
cracked or debris-prone. This is because the shape can be 
estimated as far as its surface can be viewed with an optical 
microscope. On the other hand, it would be difficult to use 
this method for reflective materials because the surface can-
not be observed with an optical microscope. 

The proposed method may be used not only for laser 
grooving but also for laser ablation processing. Observing 
micro-surface is important [9] [10]. Our proposed method is 
applicable to observing operations with submicrometric ac-
curacy, where pre-learning is possible and real-time shape 
estimation in repeated processing is desirable. 
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Appendix 
Appendix A Pseudo code for taking cross-section images. 

 declare the array[height][width][num of images] 
for k = 1 to num of images 

open images into the array[:][:][k] 

for i = 1 to height 
export images from the array[i][:][:] 

Appendix B Pseudo code for fitting to a normal distribution. 
for Wavelength = 1 to length of \ 
the cross_sectional_wave 

make normal_distribution_wave with \ 
the same length as Wavelength 

calculate convolution between \ 
cross_sectional_wave and \ 
normal_distribution_wave 
search maximum value in calculation result 

substitute the maximum value into the array 

153



JLMN-Journal of Laser Micro/Nanoengineering Vol. 16, No. 2, 2021 

search maximum value in the array and \ 
get the value of center "c" and width "w" 

make the distribution_wave from "c" and "w" 
calculate the cross_sectional_wave * \ 
the distribution_wave / sum of squared elements\ 
of the distribution_wave 

get the stretched_distribution_wave \ 
from the distribution_wave multiplied \ 
by the culculation result 

get the value of depth "d" from differences \ 
between maximum value and minimum value \ 
in the stretched_distribution_wave  

Appendix C Pseudo code for fitting to a trapezoid. 
for lower_base = 3 to length \ 
of the cross_sectional_wave 

for topper_base = lower_base-2 to 1 
declare height = 1 
make normal_trapezoid_wave \ 
from lower_base and topper_base 

calculate cross-correlation \ 
between cross_sectional_wave \ 
and normal_trapezoid_wave 

substitute calculate result \ 
into the array 

search maximum value in the array \ 
and get the value of upper_base "u",\ 
 lower_base "l" and center "c" 
get the value of height "h" \ 
from maximum value in the array 
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