Fabrication of Microenvironments with Different Geometrical Features for Cell Growth Studies

*Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP, Brazil
E-mail: crmendon@ifsc.usp.br

**Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista (UNESP), Rua Expedicionários do Brasil 1621, Araraquara, Sao Paulo 14801-960, Brazil

***Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Avenida dos Bandeirantes, 3900, CEP 14049-900, Ribeirão Preto, São Paulo, Brasil

****CISBi (Center for Integrative Systems Biology), NAP/USP

1. Introduction

Cell growth monitoring is fundamental for understanding a variety of physiological processes. In order to replicate natural cell environments, it is necessary to produce structures with accurately defined features, since those can influence the attachment, migration, and proliferation of cells [1-5]. One method that has been recently explored to fabricate microenvironments for cell culture is the use two-photon polymerization (2PP) [1-5]. This method takes advantage of the spatial selectivity provided by two-photon absorption to fabricate complex three-dimensional structures, without geometrical limitation and with sub-micrometric resolution [6-10]. 2PP has been shown as a suitable approach for the fabrication of structures for bio-related studies, such as, for example, scaffolds to study cell viability, growth and migration [1-5, 11-13].

In this work we used 2PP to fabricate microenvironments with distinct geometrical features, to evaluate its influence on the development of cells, since only a few works addressing such issue have been reported in the literature [1, 2, 4]. Here, Michigan Cancer Foundation-7 (MCF-7) cells stably expressing GFP (Green Fluorescent Protein) [14] were cultured into microenvironments composed of a matrix of structures derived from breast adenocarcinoma that has been extensively used as a model system to investigate fundamental aspects of the tumor biology [15-17], as well as to test new treatments [18-20]. Since the fabricated microenvironments provided favorable conditions for cell development, the influence of microenvironments’ geometrical features on cells growth was analyzed by transmission and fluorescence microscopies. Our results indicate a dependence of the cell growth on the spacing between the structures on the microenvironment, but not on its shape.

2. Experimental

The resin used for the microfabrication is composed by two three-acryl monomers; tris(2-hydroxyethyl) isocyanurate triacrylate (Sartomer SR 368 - 50 wt.%), and ethoxylated (6) trimethylolpropane triacrylate (Sartomer SR 499 - 50 wt.%). While the first one provides hardness to the structure, the later reduces the shrinkage tensions upon polymerization, preventing deformations on the final structure [21]. As the photoinitiator for the polymerization process we used ethyl-2,4,6-trimethylbenzoyl phenylphosphinate, commercially known as Lucirin TPO-L [21]. The monomers are mixed to the photoinitiator for 1 h to obtain a homogeneous solution.

Microstructures were produced by two-photon polymerization (2PP) using a Ti:sapphire laser oscillator at...
82 MHz and delivering 100 fs pulses, centered at 790 nm. The laser beam is focused into the resin using a microscope objective with 0.85-NA (60 ×). The intensity of femtosecond pulses at the focal volume is high enough to induce two-photon absorption and locally initiate the radical polymerization. The laser is scanned in the x-y direction by a pair of movable mirrors, while the sample's axial (z) positioning is performed by a motorized stage. An illumination source and a CCD camera allow for real time monitoring of the polymerization. This experimental apparatus is described in details elsewhere [22, 23]. After polymerization, the sample is immersed in ethanol to wash away the uncured resin, leaving on the substrate only the fabricated microstructures.

Fabrication procedure consisted of producing a matrix arrangement of microstructures, with different shapes (cylinders and parallelepipseds) and spacing between them (12, 18, 24 and 30 μm). Such microstructures arrangements, here named microenvironments, were characterized using scanning electron microscopy (SEM; HITACHI microscope, model TM3000). The fabricated microenvironments were kept in ethanol for 1 day to leach out the unpolymerized toxic monomer, and subsequently rinsed with distilled water. Finally, the samples were sterilized by performing irradiation with UV-light for a period of 1 hour.

MCF-7 cells were transduced with lentiviral particles carrying the coding region of GFP. MCF-7 cells were cultured in minimum essential medium (MEM) containing 0.01 mg/ml of human recombinant insulin and fetal bovine serum, to a final concentration of 10 %. The cells were kept in an atmosphere containing 5% of CO2 and temperature of 37 °C [24, 25]. We evaluated cell development into the fabricated microenvironments by monitoring fluorescence and transmission optical microscopy images (ZEISS, model LSM 700) for a period of 48 h.

3. Results and discussion

Figure 1 shows scanning electron microscopy (SEM) images of typical microenvironments composed of microstructures with square (a) and circular (b) cross-sections that are separated, in this case, by 24 μm. The SEM macrographs in Fig. 1 reveal that the microenvironments exhibit good definition and physical integrity. For all microenvironments fabricated (with structures separation of 12, 18, 24 and 30 μm), the square section has a lateral dimension of 20 μm, while the circular ones have a diameter of approximately 10 μm.

The microenvironments were seeded at a cell density of 10^4 cells/mL, after which we wait 24 h for cells attachment and proliferation, before starting taking images of the sample. The monitoring of the cell growth in the microenvironments was performed for two days (24 and 48 h) by optical microscopy. In Fig. 2 we show, as an illustration, a bright-field microscopy image of a microenvironment (square cross-section and spacing of 12 μm) after 24 h of incubation. This result clearly shows the growth of MCF-7 cells nearby the structures, demonstrating the compatibility of the fabricated environments. Figure 2 also illustrates that, for some microenvironments, microstructures detach from the substrate during the cell culture.

The growth of MCF-7 cells in the distinct microenvironments was studied by analyzing optical microscopy images. Figure 3 shows a typical result of bright-field (a) and fluorescent (b) images of the cells (top-view), obtained 48 h after seeding, for a microenvironment with 12 μm of spacing. The microenvironments exhibit yellow fluorescence, resulting from the emission of the polymer, while cells present the characteristic green fluorescence due to the GFP expression. As it can be seen in Fig. 2, living cells are uniformly distributed throughout the microenvironment.

3. Results and discussion

Figure 1 shows scanning electron microscopy (SEM) images of typical microenvironments composed of microstructures with square (a) and circular (b) cross-sections that are separated, in this case, by 24 μm. The SEM macrographs in Fig. 1 reveal that the microenvironments exhibit good definition and physical integrity. For all microenvironments fabricated (with structures separation of 12, 18, 24 and 30 μm), the square section has a lateral dimension of 20 μm, while the circular ones have a diameter of approximately 10 μm.

The microenvironments were seeded at a cell density of 10^4 cells/mL, after which we wait 24 h for cells attachment and proliferation, before starting taking images of the sample. The monitoring of the cell growth in the microenvironments was performed for two days (24 and 48 h) by optical microscopy. In Fig. 2 we show, as an illustration, a bright-field microscopy image of a microenvironment (square cross-section and spacing of 12 μm) after 24 h of incubation. This result clearly shows the growth of MCF-7 cells nearby the structures, demonstrating the compatibility of the fabricated environments. Figure 2 also illustrates that, for some microenvironments, microstructures detach from the substrate during the cell culture.

The growth of MCF-7 cells in the distinct microenvironments was studied by analyzing optical microscopy images. Figure 3 shows a typical result of bright-field (a) and fluorescent (b) images of the cells (top-view), obtained 48 h after seeding, for a microenvironment with 12 μm of spacing. The microenvironments exhibit yellow fluorescence, resulting from the emission of the polymer, while cells present the characteristic green fluorescence due to the GFP expression. As it can be seen in Fig. 2, living cells are uniformly distributed throughout the microenvironment.

3. Results and discussion

Figure 1 shows scanning electron microscopy (SEM) images of typical microenvironments composed of microstructures with square (a) and circular (b) cross-sections that are separated, in this case, by 24 μm. The SEM macrographs in Fig. 1 reveal that the microenvironments exhibit good definition and physical integrity. For all microenvironments fabricated (with structures separation of 12, 18, 24 and 30 μm), the square section has a lateral dimension of 20 μm, while the circular ones have a diameter of approximately 10 μm.

The microenvironments were seeded at a cell density of 10^4 cells/mL, after which we wait 24 h for cells attachment and proliferation, before starting taking images of the sample. The monitoring of the cell growth in the microenvironments was performed for two days (24 and 48 h) by optical microscopy. In Fig. 2 we show, as an illustration, a bright-field microscopy image of a microenvironment (square cross-section and spacing of 12 μm) after 24 h of incubation. This result clearly shows the growth of MCF-7 cells nearby the structures, demonstrating the compatibility of the fabricated environments. Figure 2 also illustrates that, for some microenvironments, microstructures detach from the substrate during the cell culture.

The growth of MCF-7 cells in the distinct microenvironments was studied by analyzing optical microscopy images. Figure 3 shows a typical result of bright-field (a) and fluorescent (b) images of the cells (top-view), obtained 48 h after seeding, for a microenvironment with 12 μm of spacing. The microenvironments exhibit yellow fluorescence, resulting from the emission of the polymer, while cells present the characteristic green fluorescence due to the GFP expression. As it can be seen in Fig. 2, living cells are uniformly distributed throughout the microenvironment.

The growth of MCF-7 cells in the distinct microenvironments was studied by analyzing optical microscopy images. Figure 3 shows a typical result of bright-field (a) and fluorescent (b) images of the cells (top-view), obtained 48 h after seeding, for a microenvironment with 12 μm of spacing. The microenvironments exhibit yellow fluorescence, resulting from the emission of the polymer, while cells present the characteristic green fluorescence due to the GFP expression. As it can be seen in Fig. 2, living cells are uniformly distributed throughout the microenvironment.
microenvironments, that in fact present different shapes and spacing, our results are presented in terms of microenvironments’ unit-cell area, defined as the free area between microstructures of a repetitive unit of the microenvironment, as illustrated in the inset of Fig. 4. The top axis of Fig. 4 indicates the corresponding microstructures spacing in the microenvironments.

Figure 4 show that, for both types of microenvironments (circular and square cross-section), the density of cells decreases as the unit-cell area of the microenvironment increases. Such trend is probably related to the fact that as the unit-cell area increases, the microstructures are farther apart, which diminishes cells contact with the structures in the microenvironment, hindering cells fixation and, consequently, growing. It is important to mention that the average area of the MCF-7 cell, determined in our experiments, is approximately 400 \(\mu \text{m}^2 \). Although the results of Fig. 4 indicate that the cell density attained for both types of microenvironments are on the same order, distinct behaviors can be observed in Fig. 4 (a) and circular (b) cross-sections. The inset illustrates the unit cell area of the microenvironment. The lines along the points were drawn only to guide the eye.

Acknowledgments
The authors acknowledge financial support from FAPESP (Poc. 2011/12399-0, 2012/21807-7), CNPq and CAPES from Brazil.

References

(Received: August 1, 2014, Accepted: October 29, 2014)