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In this work we theoretically introduce and experimentally examine a novel type Bessel-like 
beams which have an intensity distribution spherically modified by a polarization structure when 
compared to standard Bessel beams. Standard Bessel-Gaussian beams can be either linearly or radi-
ally and azimuthally polarized. Here, the Bessel-like beams with a Gaussian envelope, we are intro-
ducing, can have either spherically radial or meridional - azimuthal polarizations. In order to im-
plement those beams experimentally we investigate their vector spatial spectra numerically for the 
case of a finite energy. A proper choice of the cone angles of individual plane wave components and 
sizes of Gaussian apertures, we can control experimentally intensity distribution of resulting beams. 
Lastly, we demonstrate that in two limiting cases we can form from our solutions either two optical 
needles or doughnut-like intensity patterns. 
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1. Introduction 
An interest in laser beam shaping and exotic beam for-

mation was on a rise in the recent years in order to satisfy 
either some specific practical applications or as well as a 
general pure scientific interest. A good example of struc-
tured light is a nondiffracting Bessel-Gauss beam which 
exhibits a long focal line and is well known for its self-
reconstructing properties [1,2]. In a similar fashion, addi-
tional degree of freedom in the transvers profiles with 
asymmetrical intensity distributions, which have compara-
ble to Bessel beam properties, can be achieved after intro-
ducing the so-called Mathieu-Gaussian and parabolic-
Gaussian (Weber-Gaussian) beams. [3,4].  

Usually Bessel beams are considered as scalar beams 
because their angular frequencies are low. However, when 
the angle of the Bessel cone is large, scalar description is 
not valid anymore and one needs to introduce a vector one. 
Within the vector description a Bessel beam becomes non-
homogeneously polarized, and even the longitudinal com-
ponent of the electric field can appear. A good example of 
this situation are radially polarized beams, where tight fo-
cusing can further increase the longitudinal component of 
the electric field of the beam as plane wave components 
with nearly perpendicular to the propagation axis angles are 
impinging upon the focal spot. Interestingly, this situation 
can lead to improved laser microfabrication rates in hole 
drilling operations as it was experimentally confirmed for 
azimuthally and radially polarized Bessel beams recently 
[5]. 

The influence of the nonhomogeneos polarization state 
of the beam on its structure usually results in polarization 
singularities, which are present in the vector beams. They 
distort the beam profile by the introduction of an intensity 
zero, which, as a rule, is cylindrically symmetric both for 
azimuthally and radially polarized beams. 

However, within the electromagnetics, there are so 
called vector spherical multipoles, which can have two 

interesting polarization states, which can be called spheri-
cally radial (electric multipoles) or meridional – azimuthal 
(magnetic multipoles). Those nonhomogeneous polariza-
tions exhibit some intriguing properties: a) they are spheri-
cally symmetric and b) they have a so-called doughnut 
shape. 

So called optical doughnut beams are considered as 
promising for optical manipulation systems, where struc-
tured optical fields are employed to handle small objects. 
These beams have zero intensity region at the center of the 
beam [6].  

In this work we investigate a Bessel like beam, which 
has a nonhomogeneous polarization state, which can be 
classified as meridional – azimuthal. We consider here this 
novel type of a beam for two cases with two distinct types 
of intensity distributions that display appearance of an opti-
cal doughnut, mentioned already, and of a structure, which 
can be called a double needle.  

 
2. Theory  

Optical beams that can be mathematically expressed us-
ing separable variables both in the transverse and longitu-
dinal planes and which are solutions of Helmholtz equation 
usually are called nondiffracting beams. A Bessel beam is a 
good example, which describes a beam in the circular cy-
lindrical coordinates. Its complex amplitude can be written 
as 

 
( )

0
( , ) ( ) exp i ,mA J k mρρ ϕ ρ ϕ=            (1) 

 
where mJ  is m -th order Bessel function of the first kind, 

,ρ ϕ  are polar coordinates, 
0

sink kρ θ=  and coszk k θ=  
are transverse and longitudinal components of the wave 
vector k , θ  - is a half angle of the Bessel cone, m - is a 
topological number (or a topological charge), that describes 
phase front dislocation (an optical vortex present in the 
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wavefront of a higher order Bessel beam). A spatial spec-
trum of a Bessel beam can be written as: 
 

( ) ( ) ( )
0

1, exp i
2Bs k k k m

kρ ρ ρ
ρ

φ δ φ
π

= − ,     (2) 

 
where δ  is a delta function and φ  is an azimuth angle of a 
spatial spectrum. 
An ideal Bessel beam is endless in the space and has an 
infinite amount of the energy. Experimentally obtainable 
beams (also known as Bessel-Gaussian beams) are bound 
in space and have a finite amount of the electromagnetic 
energy. For the Bessel-Gaussian beam a new concept of the 
Bessel zone arises. This is the zone, where the Bessel-
Gaussian beam exists. The length of the Bessel zone 

B
z de-

pends on the angle of the Bessel half-cone and the width of 
its Gaussian aperture 0d  and can be expressed as 

0
/ tan

B
z d θ= . Traditionally, experimentally realizable Bes-
sel beams can be obtained using a combination of a narrow 
ring type aperture and a Fourier lens. A more efficient way 
to produce a Bessel beam is to use a conical prism (an ax-
icon), which modulates only the phase of incoming beam. 
An example of a Bessel-Gaussiam beam is depicted in the 
Fig. 1.  
 

 
 

The complex amplitude of a vector beam can be ex-
pressed as a superposition [7–9]: 
 

( ) ( ) ( ),n n n n
n

c f= +∑E r M r N r          (3) 

 
where nc and nf  are coefficients and M , N – are vector 
fields, which were derived from a scalar solution of the 
scalar Helmholtz equation using the following approach 
from the Ref. [8]: 
  

( ) [ ( )],A= ∇×M r a r               (4) 
 

[ ]( ) 1 ( , / )k= ∇×N r M r             (5) 
 
where a is a some vector. In this work, we construct a vec-
tor Bessel beam when a  is a radius vector R of the spheri-
cal coordinate system: 
 

 x y zx y z= = + +Ra e e e ,            (6) 
where x, y and z are Carthesian coordinates and xe , ye  and 

ze  are unit vectors of the coordinate system. 
As it was demonstrated by Stratton [8], any vector solu-
tions obtained using this vector do satisfy the boundary 
conditions on a sphere. Thus, for our purpose it would be 
interesting to investigate how the scalar Bessel beam will 
be transformed during this vectorization approach. 
In general, two main modes, which are described by vector 
fields M  and N , have physical meaning and can be ob-
served in the free space. The electric field in the TE mode 
is tangential to the surface of the sphere (vector field M ) 
and the electric field in the TM mode is pointing normally 
to the surface of the sphere (vector field N ).  
In this work we study a specific case when 0nf = , see Eq. 
(3). Thus, expressions for the components of an ideal Bes-
sel beam in our case are as follows: 
 

( ) ( )
0

( , , ) i exp i im z
mzM z J k k z mρ ρρ ϕ ρ ϕ
ρ

= +   (7) 

 

( ) ( )
( )

0 0

'( , , ) i

exp i i

z m m

z

M z k J k zJ k

k z m

ρϕ ρρ ϕ ρ ρ ρ

ϕ

 = − × 
+

  (8) 

 

( ) ( )
0

( , , ) i exp i im zzM z mJ k k z mρρ ϕ ρ ϕ= − +    (9)  

 
Due to the space limitations we omit the expressions for the 
components of a vector Bessel-Gauss beam. They will be 
presented elsewhere, however we will demonstrate later the 
properties of those vector beams.  
We start with an example of a numerically calculated trans-
verse intensity distribution of a Bessel-Gaussian type opti-
cal beam for two different on-axis distances z, results are 
shown in the Fig. 2.  
 

 

 

We obtain the vector spatial spectra of these vector Bessel 
beams by numerically performing the Fourier transform for 
the individual components the beam.  

Fig. 1 Intensity distribution of a scalar Bessel-Gauss beam 
in the transverse (a) and longitudinal (b) planes 
for 0m = . All units are normalized to the wave-

length of the beam. 

Fig. 2 Intensity distributions of meridional – azimuthal polar-
ized Bessel-Gaussian beams |M|2 in the transverse 

(x,y) plane for 0 40d = . Cross sections were comput-
ed at (left) 0z =  and (right) 1z =  distances. Lines 

here depict directions of the electric field. 
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2.1 Experimental setup 
The experimental setup for generation of the vector 

components of the spatial spectrum is presented in the Fig-
ure 3. The 4f lens system is used to transfer the spectral 
image from the SLM to a lens (L4). Here, after the Fourier 
transform, we generate the desired beam profile which is 
captured and recorded afterwards by the imaging system. 
Parameters of experimental setup are: 100 mW, 532 nm 
CW DPSS laser (Changchun New Industries Optoelectron-
ics Technology Co., Ltd.), HWP – half wave retarder plate, 
POL –Brewster polarizer, ND – neutral density attenuating 
filter, OBJ1 –objective lens, L1 –collimating lens, M1 –
mirror, AP1 –aperture, BS – beam splitter, SLM – phase-
only spatial light modulator (PLUTOVIS-006-A, 
HOLOEYE Photonics AG), L2-L3 –lenses in 4f configura-
tion, L4 – Fourier transform lens, imaging optics OBJ2-L5 
and CCD camera are set up on a motorized translation 
stage. 
A complex-valued spatial spectrum of a single vector com-
ponent is converted to a phase-only spatial phase-mask 
using the so-called checkerboard method.  

 

 
 

3. Experimental and numerical results 
Numerically calculated vector components of a spatial 
spectrum are depicted in the Fig 4. As one can see, the spa-
tial spectrum consists of two rings with angles 1 3.4θ = °  
and 1 4.6θ = ° , where each individual ring has its own 
phase modulation.  

 

 
Vector components of the spatial spectrum were numer-

ically calculated and after encoding into the phase-only 
masks were uploaded onto the matrix of the SLM. The out-
come of this operation are experimentally measured array 
of 2D intensity distributions for each individual vector 
components. 

An example of such experimental measurement is de-
picted in the Fig. 5, For the sake of brevity only a single 
case of a x  component of the beam is presented. As we 
observe, the linear focus consists now not from a single 
line as in the case of the classical Bessel Gaussian beam 
but it has two distinct zones of the non-zero intensity. 
Those non-zero zones are separated by a zone with nearly 
zero intensity at the very center of the optical beam. In the 
( , )z y  plane we can observe the distinct ring structure of a 
Bessel beam, while in the ( , )z x plane only line light pat-
tern can be seen. The y component of the beam is rotated 
by the angle of / 2π  in the ( , )x y  plane when compared to 
the x  component, therefore its properties are similar, what 
justifies our decision to omit its graphs here.  

 

 

 

 
 

Fig. 3 Sketch of the experimental setup. CW laser, lenses 
(L1-L5), objectives (OBJ1 and OBJ2), spatial light 
modulator (PLUTOVIS-006-A, HOLOEYE Pho-

tonics AG) and a CCD camera 

Fig. 5 Experimentally obtained intensity distribution of 
the xE  component of a meridional – azimuthal polarized 

Bessel-Gaussian beam in two planes a) ( , )z x  and b) 

( , )z y . Topological charge 1m =  and aperture 0 12d = . 

Fig. 4 Intensity (left) and phase (right) distributions of the 
vector components of the spatial spectrum, 

when 1m =  and 0 12d = . The first line is the x 
component, and second – the y component.  

Fig. 6 A three-dimensional depiction of the experimental-
ly obtained intensity distribution of the xE  component of 

the meridional – azimuthal polarized Bessel-Gaussian 
beam. For better visualization of the field the opacity is set 
at small values of the intensity. Topological charge 1m =  

and Gaussian aperture 0 12d = . 
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A 3D intensity distribution of the x component is presented 
in the Fig. 6. As we observe the round Bessel-like rings, 
which are azimuthally polarized, are formed only at the 
beam waist or in the very center of the Bessel zone. More-
over, as we see, the intensity on the optical axis increases 
when going further from the center of the beam.  
This is the best manifestation of the changes in the intensity 
distribution, which are extensively caused only by the po-
larization structure of the beam. As the beam propagates, 
we can observe its structure at each plane and we can see 
that the polarization changes during the propagation. At the 
very center of the beam it forms a structure, which can be 
described as a circularly polarized state, a rotating polariza-
tion state. A bit further away from the center of the beam, at 
the periphery the polarization state can be described in 
classical terms as azimuthal.  
Thus, both complicated polarization structure and intensity 
distribution can be observed for this particular case. This 
especially good can be seen by individually inspecting the 
individual beam components at different propagation dis-
tances.  
Transverse intensity distributions of the x component at 
different distances from beam waist are depicted in the Fig. 
7. Results of our numerical modeling (Fig. 7 (a-c)) perfect-
ly coincide with our experimental results here, see Fig. 7 
(d-f). While propagating, the transverse field experiences 
rotation and its intensity is localized at the center of the 
beam.  
A naïve inspection of Eqs. (7, 8) reveals, that for 0z =  mm, 
the meridional – azimuthal polarized Bessel-Gaussian 
beam is described as a superposition of the thm − order 
Bessel function, and for 0 z  , or for situations outside the 
center of the beam, the beam is described as a sum of Bes-
sel with topological numbers 1m −  and 1m + . Therefore a 
rotation of the intensity pattern is observed, see Fig 7. 

 

In another limiting case, when the aperture of the Gaussian 
envelope is small (i.e. the ring in spatial spectrum is rather 
wide), the physical properties of the Gaussian beam are 
dominant in the meridional – azimuthal polarized Bessel-
Gaussian beam. As an example of this situation, we will 

now examine this limiting case. Here, the parameter 0d  has 
to be small enough, to not observe the Bessel function in 
the intensity pattern. An experimental example of this sit-
uation is presented in the Figure 8. 
 

 

 

Here, two different cross-sections of the intensity of the yE  

component of the the meridional – azimuthal polarized 
Bessel-Gaussian beam are investigated. We note that the 
intensities of both (x and y) components form doughnut-
like intensity patterns, see Fig. 8. A three-dimensional visu-
alization of two individual components for this particular 
case are depicted in the Fig. 9.  

 

Thus, a proper choice of the angles of the Bessel cone and 
sizes of Gaussian envelopes, it is possible to control the 
intensity distribution of resulting beams. It seems, that this 
intensity control has two rather different limiting cases en-
coded as its distinct features. 
 
4. Conclusions 

In this work we have both theoretically, numerically and 
experimentally examined a novel type of Bessel-like beam, 

Fig. 8 Experimentally obtained intensity distribution of 
the yE  component of the meridional – azimuthal polar-

ized Bessel-Gaussian beam, for a particular case, when the 
Gaussian envelope is rather small.  

Fig. 7 Intensity distribution in the transverse plane for two 
cases of experimentally observed (a-c) and numerically 

calculated (d-f) vector component xE  of the meridional – 

azimuthal polarized Bessel-Gaussian beam with 0 7d =  at 
following distances: (a,d) 0 mm,z =  (b,e) 

0.05 mm,z = (c,f) 0.1 mmz =  from the focal plane. 

Fig. 9 A depiction of two experimentally obtained iso-
surfaces: the xE  component (red) and yE  component 
(blue) of the meridional – azimuthal polarized Bessel-
Gaussian beam for small ( 0 7d = ) values of Gaussian 

aperture  
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which have a novel spatial structure due to meridional-
azimuthal polarization state, which has drastically modified 
the standard intensity profile of a common Bessel beam.  

Nonhomogeneous polarizations like azimuthal and radial 
are becoming important in areas of laser microprocessing, 
as the number of reports on their efficiency for material 
processing applications is increasing [10, 11]. Given their 
unique properties and nondiffracting properties combined 
with spherical polarization nature meridional – azimuthal 
polarized Bessel-Gaussian beams should be interesting for 
laser microprocessing applications, when round cuts and 
controllable corners are important.  
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