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Bessel beams generated via axicons are widely used for various applications like optical twee-
zers or laser microfabrication of transparent materials. The specific intensity profile having high as-
pect ratio of beam width and length in turn generates high aspect ratio void that resembles a needle. 
In contrast to commonly generated Bessel beam that has a fixed axial intensity distribution. We pre-
sent a novel method to engineer an optical needle that can have an arbitrary axial intensity distribu-
tion via superposition of different cone angle Bessel beams. We analytically describe spatial spectra 
of an optical needle having arbitrary axial intensity distribution. We also demonstrate a superposi-
tion of independent optical needles and analyze the physical limitations to observe well separated 
optical needles as they are influence by mutual interference of the individual beams. In order to ver-
ify our theoretical and numerical results we generate controllable spatial arrays of individual beams 
with various numbers and spatial separations by altering a spectrum of incoming laser beam via spa-
tial light modulator. Lastly, we numerically examine distortions caused by propagation through pla-
nar air-dielectric interface and show compensation method by appropriately modifying spectral 
masks. 
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1. Introduction 
In many applications of laser microfabrication and op-

tical trapping it is advantageous to use laser beams with 
long depth of focus and narrow transverse intensity distri-
bution [1]. One example of such optical field is a non-
diffracting Bessel beam, which exhibits such features in the 
so-called Bessel zone [2]. These beams are usually gener-
ated by axicons and are widely used in such applications as 
laser micromachining [4-6] and optical tweezers [7]. How-
ever due to fixed bell shaped axial intensity distribution 
these beams are only a single type of the optical needle 
family [3]. 

In practical applications it is important to eliminate ab-
errations caused by planar dielectric material interface (e.g. 
focusing from air into the volume of bulk material) [8]. 
Thus, a numerical investigation of the problem with 
demonstration how the aberration may be eliminated is of a 
practical importance. 

It was shown in Ref. [9] that the superposition of zero-
order Bessel beams with specific axicon angles and com-
plex amplitudes can be used to create a predefined axial 
intensity distribution which is more practical than axial 
intensity pattern obtained by conventional conical lens. In 
this work we introduce a methodology of producing paral-
lel Bessel-like optical needles with controllable individual 
axial intensity pattern. We present also an experimental 
implementation of such beams using a spatial light modula-
tor. Lastly we dive into the problem of the aberrations in-
troduced by a planar interface and show, how one could 
compensate axial intensity distortions due to focusing 

through air-dielectric interface. The elimination spatial ab-
errations caused by planar dielectric material interface (e.g. 
focusing from air into the the bulk material) are very im-
portant for practical applications as it not only impacts the 
laser energy deposition efficiency [8] but also the axial 
intensity distribution of the optical needle. Thus, a numeri-
cal investigation of the problem with demonstration how 
the aberration may be eliminated is of a practical im-
portance. 

 
2. Axial intensity control in an optical needle and 
translation of optical needles 

In this section we present the theoretical basis for crea-
tion of arrays of parallel Bessel-like optical needle beams 
with controlled axial intensity pattern. Here we use ideal 
Bessel beams as a basis functions. They are obtained from 
an angular spectrum described by a Dirac’s delta function 
[10]. These nondiffracting beams are well enough approx-
imations of experimentally observed intensity distributions 
near the focal point of the Fourier lens. 
2.1 Axial intensity control in an optical needle 

Ideal nondiffracting Bessel beam is a solution of scalar 
Helmholtz equation in circular cylinder coordinates 

 
( , , ) ( ) exp(i i )m zz J k m zkρψ ρ φ ρ φ= + ,                       (1) 

 
where ψ - is electric field, mJ - the m - th order Bessel 
function, , , zρ φ - cylindrical coordinates, kρ , zk - radial 
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and axial wavenumbers respectively and m is a topological 
charge of the Bessel beam [10]. 

Any solution of scalar Helmholtz equation can be rep-
resented as a 3D integral containing plane waves with dif-
ferent wave vectors, which can be further reduced to a 2D 
integral, if the fields are axisymmetric, see [10]. This two-
dimensional field representation is based on Fourier-Bessel 
transform and can be rewritten for our purposes by chang-
ing the integration variables from kρ  to zk . The axial 
component of the wave vector will enter into the integral as 
a Fourier transform. 

This approach to the engineering of axial profiles is 
discussed in great detail in Ref [9]. By enforcing the radial 
coordinate to be zero, one ends up in a Fourier series (with 
respect to axial coordinate z) using a superposition of Bes-
sel beams (1), where a Fourier integral is defined as 

0( ) ( ) ( ; )z z zzkA K K dKψ
∞

−∞
+Ψ = ∫r r .                         (2) 

We assume, that 0z z zk k K= + , where 0zk  is a carrier wave 
vector and ( )zA k - complex amplitude of the spatial spectra 
(i.e. of the each individual Bessel beam component). The 
function ψ  for the case 0m =  has values on axis 

exp(i )zk zψ = , therefore the Eq. (2) on-axis will be an ex-
pression for the Fourier spectrum of a selected axial inten-
sity distribution ( )(0, )z f zΨ = , and the term 0zk  is used 
to shift the spectrum to positive zk values in order to re-
strict to forward propagating waves only 

i1( ) ( )
2

zk z
zA k f z e dz

π
+∞ −

−∞
= ∫ .                                      (3) 

Thus, a continuous superposition of Bessel beams ( )Ψ r de-
fined in (2) with spatial spectrum (3) can exhibit properties 
of axial intensity similar to those defined by a function 

( )f z . 
 
2.2 Translation of an optical needle 

In order to control transverse position of an optical 
needle we use addition theorem of Bessel beams [10] 

1 122 i ( )i
2 12 1( ) ( ) ( ) mn

n m n m
m

J k e J k J k e φ φφ
ρ ρ ρρ ρ ρ

∞
−

+
=−∞

= ∑ ,  (4) 

 
Fig. 1 Bessel function translation. 

where 1,ρ  2ρ - cylindrical coordinates of first and second 

coordinate systems respectively and 1ϕ  and 2ϕ  are azi-
muthal angles of first and second coordinate systems. The 
spectrum of individual Bessel beam is Dirac delta function 
multiplied by azimuthal phase term, therefore the spectrum 

of translated Bessel beam is a sum of many terms with Di-
rac delta functions 

12

i
i

12

i ( sin )
ˆ ( , ) ( ) .

kmm
m

k m
m

e k k
k J k e

k

φ
φ ρ

ρ ρ
ρ

δ θ
ψ φ ρ

∞
−

=−∞

−
= ∑ (5) 

In this way the Bessel beam with origin at shifted point 
2O  may be expanded as a superposition of Bessel beams in 

the unshifted origin 1O  (see Fig.1).  
Let us assume, we would like to have a number 
1, 2,p P=  of independent parallel optical needles each 

with its own axial profile and position ( , )p px y  in the 
transverse plane. We use the superposition principle and 
express the resulting spatial spectrum as a sum  

 

0
ˆ ˆ( , ) ( ) ( , ; , )x y z x yp pp z

p
zkk k A K k k x y dKψ

−∞

∞
= +Ψ ∑∫ . (6) 

here i1( ) ( )
2

zk z
p z pA k f z e dz

π
+∞ −

−∞
= ∫  is the Fourier transform 

of the individual axial intensity profile ( )pf z , and 
ˆ ( , ; , )x y p pk k x yψ is a Bessel beam’s spatial spectrum, when 

it is shifted in the transverse plane to the point ( , )p px y . 
 

3. Compensation of the aberration due to the planar 
interface 

In order to analyze aberrations caused by air-dielectric 
interface we extend our scalar beam description to a vector 
one by assuming that the beam is x-polarized 


1 1

ˆ( , ) ( , )θ φ θ φ= ΨV x                                                    (7) 
here 1θ  is the incidence angle on the air-dielectric interface, 

Ψ̂ is the angular spectrum as defined in (7). We note also 
that Bessel beams produced by conventional conical lens 
do not suffer spherical aberration as the beams contain sin-
gle angles of incidence. The refraction only changes the 
Bessel angles but do not create aberrations as for a Gaussi-
an beam. In our case, we have a continuous integral of in-
dividual Bessel beams with different angles, so the result-
ing beam experiences aberrations due to the planar inter-
face. 

 
Fig. 2 Principal scheme of focusing trough air-dielectric inter-

face. Here L  – focusing lens, 1 2,n n refractive indices, incE - inci-

dent field focused by the lens L , 1 2,θ θ - focusing angles. 
According to [8,10] the transmitted field in dielectric me-
dium tE  can be expressed as the following integral over 
focusing angles  

   { }
( )2

2

1 21 1 1 1
0 0

i
2 2 2

( )[ ( , ) ] ( )[ ( , ) ]

sin cos ,

max

x y z

s p
t

k x k y k z

t t

e d d

θπ

θ θ φ φ φ θ θ φ θ θ

θ θ θ φ+ +

= + ×

×

∫ ∫E V V
  (8)  
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here st , pt  are Fresnel coefficients [8], 1θ , 2θ , φ - focus-
ing angles as depicted in Fig. 2 

From the analysis of the integral (8) we note that the 
optical beam in the second medium is distorted due to 
Snell’s law and Fresnel’s coefficients. If the ratio /p st t  of 
Fresnel’s coefficients is close to the unity then we can cor-
rect distortions just by accounting for a change in angles 
due to Snell’s law. This correction is done by substitution 

1 2 1( )θ θ θ  in the focusing integral kernel (8) 

   { }
( )2

2

2 21 2 1 2
0 0

i
2 2 2

( )[ ( , ) ] ( )[ ( , ) ]

sin cos ,

max

x y z

s p
t

k x k y k z

t t

e d d

θπ

θ θ φ φ φ θ θ φ θ θ

θ θ θ φ+ +

= + ×

×

∫ ∫E V V
(9) 

such change corresponds to the change in the spatial spec-
trum. 

To illustrate this method of distortions compensation let 
us analyze the focusing of a circle of parallel optical nee-
dles (see Fig 3) from air into dielectric medium with refrac-
tive index 2 1.5n =  

 
Fig. 3 Comparison of situations with compensation of distortions 
due to focusing trough air-dielectric interface ( 1 21, 1.5n n= = ), 
see first column or index 1, and without, see second column or 

index 2. Here (a1,2, b1,2) – are amplitude and phase distributions of 
spatial spectra and c1,2 are electric field intensity distributions. 

The planar air-dielectric medium interface is located at 0z = , the 
air is the region with 0z < . 

Results of our numerical simulations are presented in Fig. 3. 
First of all, we observe that the presence of a planar inter-
face introduces two types of distortions (see the second 
column or the right side): the longitudinal one, due to the 
change in the physical angles and a weaker transverse one, 
which can be noticed upon careful comparison of the beam 

profiles. The spatial spectra with angles adjusted so, that 
upon the entrance through the planar interface, the Snell’s 
law enforces proper axial shape of individual needles, see 
first column (or the left side) in Fig. 1.  

 
4. Experimental setup 

Verification of numerically simulated arrays of optical 
needles in the air were performed using a phase-only spa-
tial light modulator (SLM) together with an optical set-up 
depicted schematically in Fig. 4. The linearly polarized 
beam of the wavelength of 532 nm were used for the exper-
iments. The beam is limited to only a small central part (8 
mm diam.) of its expanded diameter using a diaphragm to 
achieve a more uniform intensity over the matrix of the 
SLM. The beam splitter (BS) cube ensures that the incident 
angle of zero degree is achieved. A reflected beam has a 
phase, which was modified via phase delays induced by the 
SLM. The reflected beam undergoes a rescaling inside a 4f 
imaging system and is further Fourier transformed by a 
Fourier lens. Axial and transverse intensity profiles are 
captured with an optical imaging system mounted on a lin-
ear translation stage. We note that we achieve a x27.4 
transverse magnification and approximately a x6 longitudi-
nal magnification in our setup, when compared to numeri-
cally simulated beams. 

 
Fig. 4 Optical set up of the experiment. CW laser, lenses (4f im-
aging and Fourier), objectives (40x and 10x), spatial light modu-

lator (PLUTOVIS-006-A, HOLOEYE Photonics AG), beam split-
ter BS and CCD camera. 

5. Results and discussion 
 Experiments were carried out using a SLM to verify 

diffraction of such beams in the air and to examine our 
control capabilities while controlling a) individual needles 
and b) their arrays, as well as c) distortions caused by de-
structive interference between the individual needles inside 
an array.  

5.1 Axial intensity profile of single needle 
Here we aim to create a constant step-like axial profile. 

For our experiments we select the function ( )f z of the 
axial profile to be a super-Gaussian function 

2

0

0

( ) exp
N

z z
f z

z

  −
 = − 
   

,                                        (10) 

where 1/2
0 / [2 log(2 / 2 )]Nz L= is a parameter controlling 

the axial intensity full width at half maximum (FWHM), 
N - is the order of super-Gaussian function, L  is the 
length at FWHM. 

This choice enables for smoother axial intensity profiles 
(fluctuations around the desired step-like due to the Gibbs 
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phenomenon are smaller both in the numerical simulations 
and in the experiment). 

Firstly, we examine experimentally axial intensity pro-
files described by the Eq. (10). The main aim here is to 
achieve a smooth intensity profile over length L with steep 
edges at the beginning and the end. The shape of this func-
tion is strongly dependent on the order N of the super-
Gaussian function. For low N values (N=1-4) the edge 
steepness is poor, but the axial profile itself is rather 
smooth. When increasing the number N, we increase also 
the edge steepness but we lose the smoothness.  

Experimental results for a single case of an optical nee-
dle with L=1 mm are depicted in Fig. 5 which are the best 
results (N = 7 ) which we have achieved. In this case we 
observe the most optimal balance between two competing 
factors, thus, giving us a steep and even axial intensity pro-
file. We will further use super-Gaussian axial profiles with 
N = 7. 

 
Fig. 5 A comparison of experimentally measured (orange line) 
and numerically calculated (blue line) super-Gaussian (N = 7) 

axial intensity profiles of an optical needle of the length L = 1 mm 
generated with our optical set-up. 

5.2 Arrays of optical needles 
Next, we are using in further experiments the same 

beam parameters as in previous section. Here, we compare 
experimentally and numerically obtained transverse pro-
files of three parallel optical needles positioned in one row 
with spatial separation of ρ12 = 60 λ, see Fig. 1. We observe 
a good agreement between experimental results and numer-
ical simulation as the direct comparison shows only minor 
differences in transverse intensity profiles (Fig. 6), which 
indicates both proper work of our experimental set-up and 
the correctness of theoretical methods. Some interference 
of nearby beams occurs in both cases, which can be seen as 
distortion of typical ring system around Bessel-like beams. 
All transverse profiles are captured at the middle of the 
axial profile which is set to be at the Fourier plane. 

 
Fig. 6 Intensity distribution of experimentally obtained and nu-
merical calculated parallel arrays of three “optical needles”. The 
axial length L of individual needle is L = 1mm, N = 7, the spatial 
separation ρ12 between the needles in the transverse plane is ρ12 = 

60 λ. 

Spatial separation has a big influence on the formation 
of individual optical needles. As we try to bring them closer, 
by lowering the individual separation ρ12, the destructive 
interference tends to increase and optical needles are no 
longer generated correctly. On the other hand, by increas-
ing the separation distance ρ12, distant needles lose some 
intensity due to limitations of our set-up, see Fig. 7, which 
also limits the positioning capabilities of the needles using 
the method described here. 

Length of the array is also an important factor to con-
sider as it also heavily affects the occurrence of destructive 
interference. As it can be seen from Fig.8, an array of indi-
vidual needles with shorter individual lengths L shows 
nearly no interference between individual parts. As one 
could expect, longer individual optical needles in the array 
cause more destructive interference. This can be under-
stood considering the fact, that the creation of individual 
Bessel zone requires some volume for the plane waves ly-
ing on the cone to interfere and create an optical needle. 
The longer the needle the larger is the volume of this effec-
tive Bessel zone. 

Furthermore, we demonstrate an ability to control the 
length of an individual optical needle inside the array sepa-
rately. Here, we construct an array of four optical needles 
with different individual lengths (Fig.9). The influence of 
the individual length L can be also noticed in this experi-
ment, as the interference between adjacent elements in-
creasingly gets stronger as adjacent optical needles gets 
longer (Fig. 9 b)). 

 

 

Fig. 7 Intensity distribution of experimentally obtained parallel 
arrays of three “optical needles”. The axial length L of individual 
needle is L = 1mm, N = 7, the spatial separation ρ12 between the 

needles in the transverse plane is depicted on the graph. 

 

Fig. 8 Intensity distribution of experimentally obtained parallel 
arrays of three “optical needles”. The axial length L of individual 
needle is L = 0.4 mm and 1.4 mm, N = 7, the spatial separation 
ρ12 between the needles in the transverse plane is ρ12 = 60 λ. 
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Fig. 9 Intensity distribution of experimentally obtained paral-
lel arrays of four “optical needles”. Intensity profiles are depicted 
in a) yz and b) xy planes. The individual lengths L in the array are 

L= 0.2 mm, 0.4 mm, 0.6 mm and 0.8 mm. 

Finally, we present here our capability to form complex 
spatial structures by placing individual optical needles in 
specific places in the focal plane. A good example would 
be a situation when we form a circle of eight separate nee-
dles of individual lengths L = 0.5 mm (Fig. 10). Shorter 
beams and right spatial separation between allows us to 
minimize the destructive interference and form a structure 
with clearly expressed individual needles.  

 

 
Fig. 10 Three dimensional depiction of the experimentally 

measured intensity distribution in the array of eight optical nee-
dles with individual length L = 0.5 mm. Optical needles are posi-

tion so that they create a circle. 

 
Fig. 11 Amplitude and phase distributions of the spatial spec-

tra of a circular array containing eight optical needles, depicted in 
the Fig. 10.  

The spatial spectra of such structure is depicted in Fig. 
11. We see from the amplitude distribution of the spatial 
spectra that it contains not only a single ring (as expected 
for Bessel-Gaussian beam) but a few more, not so intense 

rings which appear as we superpose multiple beams to con-
trol the axial profile. The rings also contains some intensity 
modulation which occurs as we create and superpose trans-
lated beams (see, Eq. (7)). 

The phase structure of the spatial spectra is here rather 
complicated, what can be seen as a manifestation of the 
complexity of this rather simple structure while reproduc-
ing it with plane waves. 
 
6. Conclusion 

We have presented a flexible technique, which enables 
us to create experimentally controlled arrays of parallel 
optical needles with independent axial intensity profiles. 
We have analyzed how the separation between individual 
optical needles interplays with the individual lengths of the 
optical needles. We show, that the destructive interference 
between adjacent needles is less pronounced when they are 
of different lengths. Our preliminary analysis shows, that 
this is caused by the fact, that optical needles of different 
lengths have different spatial modulation in the Fourier 
space. The distortion between the neighboring optical nee-
dles appears due to the spatial overlapping of the beams. 
Therefore to achieve the best results it is advisable to sepa-
rate the beams so that they have limited overlap. The 
downside of this technique is limiting the smallest separa-
tion between the beams, or limits the needle length, or lim-
its the beam width. 

Additionally we have introduced a step-like axial inten-
sity profile described using a super-Gaussian function. This 
has enabled us to avoid problems caused by the Gibb’s 
phenomenon, when the edges of a step function exhibit 
very sharp oscillations. We have found optimal parameter 
of the super Gaussian function N=7, which ensures both 
nice smoothness of the profile and sharpness of the edges. 

Moreover, we have demonstrated the proof-of-concept 
implementation of the technique, which allows for com-
pensation of various distortions due to aberrations intro-
duced by a planar interface between air and dielectric. 

In conclusion, the method presented here allows crea-
tion of various spatial intensity distributions in 3D which 
might be applicable for possible specific microfabrication 
tasks or optical tweezing set-ups. The implementation of 
this approach into high power laser systems will require us 
to move away from the spatial light modulator, as it cannot 
sustain high laser powers. However the spatial light modu-
lator can be a versatile device to prototype the geometrical 
phase element, which are known for their sustainability to 
high laser powers. 

 
Acknowledgments and Appendixes 

This research is/was funded by the European Social 
Fund according to the activity ‘Improvement of research-
ers’ qualification by implementing world-class R&D pro-
jects’ of Measure No. 09.3.3-LMT-K-712. 

 
References 
[1]  H. Misawa, and S. Juodkazis: “3D Laser Microfabri-

cation Principles and Applications Edited by.” (Wiley-
VCH; 2006).  



 
JLMN-Journal of Laser Micro/Nanoengineering Vol. 13, No. 3, 2018 

329 

[2] T. Čižmár, V. Kollárová, X. Tsampoula, F. Gunn-
Moore, W. Sibbett, Z. Bouchal and K.Dholakia: Opt. 
Express, 16, (2008) 14024. 

[3] M. Zhu, Q. Cao, H. Gao, J. Opt. Soc. Am. A, 31, 
(2014) 500.  

[4] M. Duocastella, C. B. Arnold, Laser and Photon. Rev. 
6, (2015) 607. 

[5] M. Bhuyan, F. Courvoisier, P. Lacourt, M. Jacquot, R. 
Salut, L. Furfaro, J. Dudley, Appl. Phys. Lett. 97, 
(2010) 081102. 

[6] F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, J. M. 
Dudley, Appl. Phys. A 112, (2016) 29.  

[7] S. Orlov, A. Stabinis, J. Opt. A, 6, (2004); 259. 
[8] L. Novotny, B. Hecht: “Principles of nano-optics”, 

(Cambridge university press, United Kingdom, 2012). 
[9] M. Zamboni-Rached, E. Recami, and H.E. Hernández-

Figueroa: J. Opt. Soc. Am. A, 22, (2005) 2465. 
[10] Stratton, Julius Adams. Electromagnetic theory. John 

Wiley & Sons, 2007. 
 

 

(Received: June 24, 2018, Accepted: December 6, 2018) 


