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Beam profile engineering, where a desired optical intensity distribution can be generated by an array of phase shifting (or 

amplitude changing) elements is a promising approach in laser material processing. For example, a spatial light modulator 
(SLM) is a dynamic diffractive optical element allowing for experimental implementations of controllable beam profile. 
Scalar Mathieu beams have elliptical intensity distribution perceivable as “optical knives” in the transverse plane and scalar 
Weber beams have a parabolic distribution, which enables us to call them “optical shovels”. Here, we introduce vector ver-
sions of scalar Mathieu and Weber beams and use those vector beams as a basis to construct controllable on-axis phase and 
amplitude distributions with polarization control. Further, we generate individual components of optical “knife” and “shov-
el” beams experimentally using SLMs as a toy model and report on our achievements in the control over the beam shape, 
dimensions and polarization along the propagation axis.  

Keywords: nondiffracting beams; polarization; Mathieu beams; Weber beams, spatial light modula-
tor; structured light; beam shaping. 

1. Introduction 
Laser beam shaping is an important technique used in 

modern laser beam applications such as light sheet micros-
copy, microfabrication and photopolimerisation to name a 
few. In situations where the same pattern is needed over 
long propagation distance it is advantageous to use non-
diffracting beams. One of them is Bessel beam [1], which 
exhibits a long focal line with high length to width ratio [2]. 
Due to this property it can be perceived as an optical needle 
[3]. Optical needle beams are advantageous to use in appli-
cations such as fabrication of long canals in bulk material, 
trapping many particles simultaneously [2,4,5]. 

In some cases the microfabrication process is sensitive 
to the polarization structure of the laser beam [6]. Nonho-
mogeneous polarizations like azimuthal or radial have been 
shown to affect the efficiency of laser drilling procedure 
[7,8]. The polarization control of optical needle could also 
increase the speed of the laser microprocessing of the mate-
rials and will be discussed in this publication as an addi-
tional degree of freedom in the use of vectorial beams. 

In a similar fashion, additional degree of freedom in the 
transverse profiles with asymmetrical intensity distribu-
tions, which have comparable to Bessel beam properties, 
can be achieved after introducing the so-called Mathieu-
Gaussian and parabolic-Gaussian (Weber-Gaussian) beams. 
[9-11].  

Mathieu beams possess a rather complicated distribu-
tion of electric field (sometimes called an “optical knife”) 
which also has some practical applications due to its 
asymmetrical cross-section [12,13]. Scalar Weber beams 
have a distinct parabolic cross-section, which enables us to 
call them “optical shovels” [10]. The spatial shape of such 
beam can be controlled via the so-called parabolicity pa-

rameter, which enables their usage in various applications, 
where the transverse intensity profile is crucial. 

Thus, both families exhibit non-diffracting properties 
similar to Bessel beams, where a relatively long focal depth 
retains unchanging intensity distribution, which makes 
them a promising candidate in laser processing. Control of 
the focal line and engineering its transverse profile [14-16] 
is the next step towards engineering of focal lines. 

Here, we introduce vector versions of those beams with 
controllable polarization and investigate numerically their 
spatial spectra. We use vector Mathieu beams [17] and vec-
tor Weber beams as a basis to construct controllable on-axis 
phase and amplitude distributions with polarization control. 
Further, we attempt to generate components of vector 
Mathieu beams experimentally using SLMs and report on 
our achievements in the control over the beam shape and 
dimensions along the propagation axis.  
 
2. Non-diffracting beams 

Nondiffracting beams can be introduced while search-
ing for solutions of the scalar Helmholtz equation 

2 2 0,kψ ψ∇ + =                    (1) 
which can be easily solved using the method of the separa-
tion of the variables 

( , , , ) ( , ) ( , ),x y z t R x y Z z tψ =              (2) 
where Z is the longitudinal and time dependent part and the 
function R represents the part of the solution, which is 
transverse. Textbooks on mathematical physics name four 
(Cartesian, polar, elliptic and parabolic) different cylindri-
cal coordinate systems, where this method leads to the ex-
pression of the electric field as an integral over plane waves, 
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which are situated on the cone defined by the transverse 
component of the wave vector kρ : 

2 i [ cos( ) sin( )]i( )

0
( , , , ) e ( )e .z k x yk z tE x y z t A dρ

π φ φω φ φ+−= ∫     (3) 

The spatial spectra ( , )S kρ φ  of this electromagnetic 
field can be to the angular function ( )A φ  as [18, 19] 

( ) ( )1 2 2( , ) 2 ( ) .zS k A k k kρ ρφ π φ δ−= − −        (4) 

According to the Morse and Feshbach, see Ref. [19], a 
scalar solution of the Helmholtz equation can lead to a so-
lution of the vector wave equation, if following operations 
are applied [19] 

[ ( , )],
1 .

M a r q

N M
k

ψ= ∇×

= ∇×

  

                   (5) 

Here a constant vector a  defines some internal symme-
tries of the vector beams. The first solution is the transverse 
magnetic mode of the vector Helmholtz equation and the 
second one represents a transverse electric mode. In an 
obvious manner, the dual electromagnetic field can be 
handily expressed using those two solutions as a basis 
functions with coefficients an and bn, leading to  

( ),

( ).
i

n n n n
n

n n n n
n

E a M b N

kH a N b M
ωµ

= − +

= − +

∑

∑

  

               (6) 

Moreover, it can be shown, that the spatial spectra of a 
single mode from Eq. (5) can be expressed through the 
spatial spectrum of the scalar beam via [18,19] 

( , ) i( ) ( , ),
1( , ) ( ) ( , ).

M

N

F k k a S k

F k k a k S k
k

ρ ρ

ρ ρ

φ φ

φ φ

= × ⋅

= × × ⋅

 

             (7) 

In our case, we will be using za e=
   and Eqs. (7) can be 

written as  

0 0

0 0

2
0

( , ) [i sin( ) i cos( ) ] ( , )

( , ) [ cos( ) cos( ) sin( ) cos( )

sin ( ) ] ( , ).

M x y

N x y

z

F k k e k e S k

F k k e k e

k e S k

ρ ρ

ρ

ρ

φ φ φ φ

φ φ θ φ θ

θ φ

= − ⋅

= − −

+ ⋅

  

  


  (8) 

 
Fig. 1 Intensity iso-surfaces of zeroth order even Mathieu with 

ellipticity parameter q=20 (left) and traveling wave Weber beams 
with p=4 (right). 

 
3. Non-diffracting Mathieu beams 

We define elliptic cylinder coordinates by the transfor-
mation 

acosh( )x iy iα ξ η+ = +                (9) 
which introduces the so-called elliptical cylinder coordi-
nates 

cosh( ) cos( ),
sinh( ) sin( ),

x
y

α ξ η
α ξ η

=
=

                (10) 

here  α is ellipticity parameter, ,η ξ are transverse elliptic 
coordinates. In these coordinates the three-dimensional 
Helmholtz equation separates into a longitudinal and trans-
verse parts as given in Ref. [9,11] 

i( )
0

i( )
0

( , , , ) ( , ) ( , )e ; 0,1, 2...

( , , , ) ( , ) ( , )e ; 1, 2,3...

z

z
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z t Je q ce q m

z t Jo q se q m

ω

ω

ψ

ψ

ξ η ψ ξ η

ξ η ψ ξ η

± −

± −

= ∈

= ∈
 

                          (11) 
where, mJe  is an even radial Mathieu function, mJo  - an 
odd radial Mathieu function, mce is even angular Mathieu 
function and mse is an odd angular Mathieu function. A 
dimensionless parameter 2 2 / 4tq kα=  and tk  is a trans-
verse wave vector component, zk  is a longitudinal wave 
vector component and indices (e) and (o) correspond to the 
even and odd Mathieu beams of the order m. Helical 
Mathieu beams are defined as 

( , , , ) ( , , , ) i ( , , , ).h e o
m m mz t z t z tξ η ψ ξ η ψ ξψ η= ±       (12) 

 

 
Fig. 2 Transverse distribution of electric field of first order even, 

odd and helical (from the left to the right)) Mathieu beams. 
 

 
Fig. 3 Transverse distribution of electric field of first order even 
Mathieu beam with different ellipticity parameter (q = 0, 5, 20, 

from the left to the right). 
In order to fully explain properties of nondiffracting 

pulses, full vectorial description must be used. Thus we 
vectorize scalar elliptic nondiffracting fields using [9,11] 
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2

4 ( , ) ( , )e .zk z t
z m m

qN Je q ce q
k

ωξ η
α

−=  

                        (14) 

 
Fig. 4  Transverse distribution of electric field of radially polar-
ized first order even Mathieu beam and its components. White 

lines represent orientation of electric field. Ellipticity parameter q 
= 20. 

 
Fig. 5 Angular spectrum of radially polarized zeroth order even 

Mathieu beam. 
Transverse electric (TE) and transverse magnetic mode 

(TM) are obtained by choosing za e=
  . Fields in TE mode 

are azimuthally polarized and are described by a vector 
function M


and fields in TM mode are radially polarized. 

A vector function N


 is used for their description. Linearly 
polarized Mathieu beams are weighted sum of TE and TM 
modes. Vector theory lets us describe Mathieu beams in 
optical systems with high numerical apertures as well when 
the incident field has a nonhomogeneous polarization. 

Radially polarized Mathieu beam exhibit also a non-
zero longitudinal component of the electric field, while 
azimuthally polarized fields are transverse only. 
 
4. Non-diffracting Weber beams 

We define parabolic cylinder coordinates by the trans-
formation 

.
2
i x iyη ξ+

= +                   (15) 

In these coordinates the three-dimensional Helmholtz 
equation separates into a longitudinal and transverse parts 

( ) ( ) ( ).U V Z zψ η ξ=  Longitudinal part has solution with 
dependence exp(ikzz), and a transverse part  

2
2 2

2

( ) ( 2 ) ( ) 0,t t
d k k p

d
η η η

η
Φ

+ + Φ =           (16) 

2
2 2

2

( ) ( 2 ) ( ) 0.t t
d R k k p R

d
ξ ξ ξ

ξ
+ − =            (17) 

Here tk  is a transverse vector and p  is a dimensionless 
parabolicity parameter. We change variables according to 
the rules σξ ν→ and uση → , where 2 tkσ = , so Eqs. 
(16) and (17) are transformed into the canonical form of the 
parabolic cylinder differential equation 

2
2

2 ( / 4 ) 0d P p P
d

ν
ν

+ − =                (18) 

Solutions to this differential equations are found by 
standard methods (e.g., Frobenius). So, even (e), odd (o) 
and traveling (T) nondiffracting parabolic beams are [11]: 

2
1

2
3

1( , ; ) | ( ; ) ( ; ),
2

2( , ; ) | ( ; ) ( ;
2

|

).|

e e e

o o o

U p P p P p

U p P p P p

η ξ σξ ση
π

η ξ σξ ση
π

= Γ −

= Γ −
    (19) 

( , ; ) ( , ; ) ( , ; ).e oTU p U p iU pη ξ η ξ η ξ± = ±        (20) 

 
Fig. 6 Transverse distribution of electric field of traveling wave 
Weber beam with different p parameter (p = 0, 1, 4, from the left 

to the right). 
where Γ1= Γ(1/4+ip/2) and Γ3= Γ(3/4+ip/2), here Γ is the 
gamma function. We note that the odd and even type para-
bolic beams have not only positive but also negative kx and 
ky components in their spatial spectrum, therefore they do 
represent standing waves. On the other hand the travelling 
wave solution has either only positive kx or only positive ky 
(depending on the orientation of the coordinate system) In 
order to fully explain properties of nondiffracting pulses, 
full vectorial description must be used. Thus we vectorize 
scalar parabolic nondiffracting fields using za e=

  . An az-
imuthally polarized parabolic Weber beam is represented 
here by a vector field M


 and the radially – by a vector 

field N
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n k
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5. Engineering of optical focal lines 
A longitudinal distribution of the beams intensity can 

be controlled by adding up vector Mathieu or Weber beams 
with different projections of the longitudinal wave vector. 
The axial intensity distribution and its spatial spectrum are 
associated via the Fourier transform 
 

 
Fig. 7 Transverse distribution of electric field of radially polarized 
traveling wave Weber beam and its components. White lines rep-

resent orientation of electric field. Parameter p = 4. 
 

( ) ( )( ) expA f z i z dzβ β= −∫ ,        (23) 
where 0z zk kβ = − , and 0zk is the projection of the carrier 
spatial frequency, ( )f z is a desired longitudinal intensity 
profile. Thus, the full control of optical beam can be ob-
tained by experimentally realizing Eqs. (13,14) for Mathieu, 
Eqs. (21,22) for Weber together with Eq. (23). 

For a radially polarized beam the spatial spectrum of a 
vector beam can be expressed as  

( , ) ( ) ( ), ,x y rk k A k q dβϕβ
−∞

∞
= ∫N NΨ F .     (24) 

and for azimuthally it is  
( , ) ( ) ( ), ,x y rk k A k q dβϕβ

−∞

∞
= ∫M MΨ F .     (25) 

As a toy model we choose two axial profile functions: 
1) an axial distribution described by a boxcar (or a rectan-
gular) function ( )1( )f z Lz L= Π − , where L is its length, 
L1 is the position and 2) an axial distribution described by a 
function ( )1( )f z Lz L= Π −  ( )2Lz L+Π − , L1 and L2 are 
positions of two steps. 
For the start, we choose the second axial distribution for 
the Mathieu based optical engineering. The spatial vector 
spectra of the optical beam is depicted in the Figure 8. We 
demonstrate a 3D distribution of an intensity isosurface of 
such beam for a situation with Mathieu beams (elliptical 
cross-section, see Section 3) and azimuthal polarization, 
Fig. 9. The cross-section of the beam in the middle of the 
first step is depicted there also, see Fig. 9. 

For the Weber beams based beams, we choose the first 
axial distribution, described by the function 

( )1( )f z Lz L= Π − . The spatial vector spectra of the opti-
cal beam is represented in the Fig. 10. We choose here the 
azimuthal polarization. We observe, that for an azimuthally 
polarized engineered profile, the structure of the vector 
spatial structure is different for x and for y component. 
Though they both contain a ring structure, the intensity of 

this structure changes differently. Thus, a generation of 
such complicated polarization structure will require not 
only phase and amplitude modulation but also independent 
modulation of x and y components. 

 

 
Fig. 8  Angular spectrum of radially polarized zeroth order even 

Mathieu beam’s x (first row) and y (second row) components with 
axial intensity distribution of two steps function. 

 

 
Fig. 9 Intensity iso-surface (left) of a beam with axial intensity 

profile of two steps function and transverse intensity profile of a 
radially polarized zeroth order even Mathieu beam and (right) its 

transverse intensity distribution in a middle of the first step. White 
lines represents orientation of the electric field. 

 
Fig. 10 Angular spectrum of azimuthally polarized even Weber 
beam’s x (first row) and y (second row) components with axial 
intensity distribution of a step function. The amplitude is in the 

first column and the phase of the components depicted in the sec-
ond. 

 
6. Experimental setup 

The experimental setup for simulation of Mathieu and 
Weber beams (linear constituents of a vector field) is pre-
sented in the Figure 11. 
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Ideally one would use a single vectorial element, for an 
example, a transmissive geometrical phase (GP) element 
(something similar to the S-waveplate, see Ref. [20]) for 
generation of vector beams.  

 
Fig. 11 A sketch of the optical setup used in the experiment. CW 

laser, lenses (L1-L5), objectives (OBJ1 and OBJ2), a po-
larisator (POL), a mirror M1, aperture AP1, a beamsplitter 

BS, spatial light modulator (PLUTOVIS-006-A, 
HOLOEYE Photonics AG) and CCD camera. 

 
Fig. 12 Intensity distribution of the experimentally obtained radi-

ally polarized zeroth order even Mathieu beam’s x (left) and y 
(right) components with q = 27 in the transverse plane (x,y). 

 
Fig. 13 (a) A three-dimensional intensity iso-surface (left) of a 

beam with axial intensity profile of two steps function and trans-
verse intensity profile of a radially polarized zeroth order even 

Mathieu beam’s y component and (right) its axial intensity profile 
(black) compared with numerical expectations (red). The red dot-

ted line depicts the focal plane. 
However, one can use as toy model of such GP element 

a phase-only SLM, where the phase mask encodes both 
amplitudes and phases of the spatial spectrum of an indi-
vidual linear x- or y-component under the investigation. As 
a SLM requires the angle of incidence to be small, the 
beam splitter (BS) is used to enforce this and to propagate 
the diffracted beam further to the camera.  
The procedure is as follows:  
1. A linearly polarized and expanded light beam (at the 
wavelength of 532 nm) reaches the matrix of the SLM at 
angle of incidence of zero degrees. 
2. It is reflected from the liquid crystal mask of the SLM, 
where the phase mask encodes both amplitude and phase 
spatial distribution. The 4f lens system (lenses L2 and L3) 
is used to transfer the spectral image from the SLM to a 
lens L4.  
3. The lens L4 makes a Fourier transform of the beam gen-
erated on the SLM. The size of the liquid crystal mask of 
the SLM (xs, ys) and focal length of the Fourier lens f4 de-

termine spatial frequencies fx and fy, which can be achieved 
in the setup. 
4. Knowing the window of spatial frequencies (fx, fy), one 
can relate them to the maximal values of transverse wave 
vectors kx, ky via k = 2πf. The pixel size dx dy×  of the SLM 
determines the pixel size x ydk dk×  of the spatial spectrum 
picture, which we obtain from Eqs. (24, 25). 
5. The complex valued spatial spectrum has to be encoded 
to a phase-only picture, suitable for our SLM. The ampli-
tude modulation is implemented here by using a checker-
board mask method, where groups of four phase-only pix-
els emulate a single pixel with arbitrarily chosen amplitude 
and phase [21]. In this method the amplitude A of the com-
plex amplitude ( )expA iϕ  is encoded as the sum of two 
different phases for a 4x4 checkerboard: 1 arccos Aϕ ϕ= −  
and 2 arccos Aϕ ϕ= + . 
6. Thus, a desired beam profile is generated in the focal 
region of the lens L4. It is captured and recorded after-
wards by the imaging system. A moving linear translation 
stage with mounted imaging system is moved along z axis. 
7. While the stage moves, the transverse intensity data at 
different distances from focal plane is imaged onto the 
CCD matrix of the camera, this image is recorded and pro-
cessed after-wards by a personal computer.  
Our optical system achieves transverse magnification of 
approximately x27.4 and a longitudinal magnification of 
approximately x6.  

Spatial spectrum of a vector beam is then expressed as a 
superposition of two linear components, which are then 
measured separately. We ensure the validity of our ap-
proach by adjusting amplitudes of the x and y components,  

 
Fig. 14 Intensity distribution of the experimentally obtained azi-
muthally polarized even Weber beam’s x (left) and y (right) com-

ponents with p = 3. 

 
Fig. 15  A three-dimensional intensity iso-surface (left) of a beam 
with axial intensity profile of a step function and transverse inten-

sity profile of an azimuthally polarized even Weber beam’s x 
component and (right) its axial intensity profile (red) compared 

with numerical expectations (blue). 
so they are proportional to the components of the actual 
vector beam. 
 
7. Experimental results 

For the sake of brevity and due to the lack of space, we 
restrict ourselves to a single polarization for each case of a 
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different cross-section profile: elliptical beams will be pre-
sented only azimuthally polarized whereas only radially 
polarized Weber beams will be considered. Moreover, a 
single boxcar function will represent the axial profile of the 
Weber beams based optically engineered beams. A two 
step function ( )1( )f z Lz L= Π −  ( )2Lz L+Π −  will be 
used as toy model for Mathieu beams based experiments. 

First, we start with experimental verification of how 
vector Mathieu beams are generated. Experimental results 
are depicted in the Fig. 12. In general we observe a rather 
good agreement between our experimental results and nu-
merical expectations, compare Fig. 8, 9. A three-
dimensional depiction of the dominant y-component is pre-
sented in the Fig. 13. We note, that we observe on-axis, see 
Fig. 13 (right picture), some interference between two ad-
jacent optical knives, which distorts the axial intensity pro-
file near the focal plane (z=0), however those distortions 
are on the acceptable level. 

Our preliminary analysis reveals, that this is happening 
due to the physical limitations of our experimental system 
– the dimensions of the liquid crystal matrix in the SLM 
are too small to properly represent the complex structure of 
the spatial spectrum. 

Lastly, we demonstrate the outcomes of our experi-
mental measurements for the case of azimuthally polarized 
Weber beams, with axial intensity distribution described by 
a function ( )1( )f z Lz L= Π − . Individual components are 
presented in the Fig. 14. Though we don’t compare here 
those results directly with our numerical expectations, ex-
cept briefly showing spatial spectra in Fig. 10, we can 
comment on a rather good agreement between our expecta-
tions from the numerical simulations and our experimental 
results. 

A three-dimensional depiction of the dominant x-
component is presented in the Fig. 15. We note, that we 
observe on-axis, see Fig. 15 (right picture) a rather good 
agreement between our experimental results and theoretical 
expectations, though some interference between two adja-
cent optical knives, which distorts the axial intensity profile 
near the focal plane (z=0), however those distortions are on 
the acceptable level. 

 
8. Conclusions and outlook 

In conclusion, we have presented a flexible theoretical 
technique, which enables us to create controlled axial pro-
files of vector optical “knives” (Mathieu based with ellipti-
cal crossection) and optical “shovels” (Weber beam based 
with parabolical crossection) with independent axial inten-
sity profiles and polarization orientation. The method pre-
sented here may allow us to create various vector spatial 
structures with controllable on-axis polarization and axial 
intensity profile which might be applicable for possible 
specific microfabrication tasks or optical tweezing set-ups 
due to their elliptically or parabolically shaped transverse 
profiles. 

A phase only spatial light modulator was successfully 
employed here as a toy model of an actual optical element 
in order to probe propagation of individual components of 
a radially polarized “optical knife” and azimuthally polar-
ized “optical shovel” with two step axial profile. 

Of course, implementation of this approach into high 
power laser systems will require us to move away from the 
conventional spatial light modulators, as they cannot sus-
tain high laser powers (with some costly exceptions), how-
ever the spatial light modulator can be a versatile toy model 
for a geometrical phase element, which are known for their 
sustainability to high powers [20].  

Nevertheless, we can report already on successful pro-
duction of very first geometrical phase elements, designed 
with a know-how described in this report und suitable for 
simultaneous generation of both linearly polarized constit-
uents of vector Mathieu and Weber beams based optical 
beams with controllable profiles and polarizations. Those 
results will be presented elsewhere. 
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